K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2019

mình hỏi : Một mảnh đất hình chữ nhật có nửa chu vi là 84m chiều rộng bằng 3/5 chiều dài.

a) tính diện tích mảnh vườn đó.

b) người ta dùng 30% diện tích để trồng hoa. hỏi diện tích vườn hoa là bao nhiêu.

a: Xét ΔAEB và ΔAEF có

AE chung

\(\widehat{BAE}=\widehat{FAE}\)

AB=AF

Do đó: ΔAEB=ΔAEF

b: Sửa đề: Chứng minh MB=MF

Ta có: ΔABE=ΔAFE

=>AB=AF

=>ΔABF cân tại A

Ta có: ΔABF cân tại A

mà AM là đường phân giác

nên M là trung điểm của BF và AM\(\perp\)BF

M là trung điểm của BF nên MB=MF

AM\(\perp\)BF tại M

=>AE\(\perp\)BF tại M

c: ta có: ΔABE=ΔAFE

=>\(\widehat{ABE}=\widehat{AFE}\)

Ta có: \(\widehat{ABE}+\widehat{DBE}=180^0\)(hai góc kề bù)

\(\widehat{AFE}+\widehat{CFE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABE}=\widehat{AFE}\)

nên \(\widehat{EBD}=\widehat{EFC}\)

Ta có: AB+BD=AD

AF+FC=AC

mà AB=AF và AD=AC

nên BD=FC

Xét ΔEBD và ΔEFC có

EB=EF

\(\widehat{EBD}=\widehat{EFC}\)

BD=FC

Do đó: ΔEBD=ΔEFC

=>ED=EC

=>E nằm trên đường trung trực của DC(1)

ta có: AD=AC

=>A nằm trên đường trung trực của DC(2)

Ta có: KD=KC

=>K nằm trên đường trung trực của DC(3)

Từ (1),(2),(3) suy ra A,E,K thẳng hàng

26 tháng 1

Hay

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
26 tháng 12 2018

a) . Xét\(\Delta ABE\) và  \(\Delta ADE\) có:

     BA = DA (gt)

     Góc BAE = góc DAE ( gt)

    AE cạnh chung

nên \(\Delta ADE\) =   \(\Delta ABE\)( c-g-c)

b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)\(^{180^o}\)

    Suy ra : \(\widehat{AIB}\)  = \(180^o\)\(\widehat{ABI}-\widehat{BAI}\)

               \(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)

    Suy ra: \(\widehat{AID}\)\(180^O\) -     \(\widehat{ADI}\)-\(\widehat{IAD}\)

   Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)

         \(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)

   \(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)

Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )

MÀ  \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )

NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)

HAY   \(AE\perp BD\)

24 tháng 12 2020

Bài nay có 2 trường hợp

a: Xét ΔEBC và ΔFCB có

EB=FC

góc EBC=góc FCB

BC chung

=>ΔEBC=ΔFCB

=>EC=FB

b: Xét ΔIBC có góc IBC=góc ICB

nên ΔICB cân tại I

=>IB=IC

Xét ΔIBE và ΔICF có

IB=IC

IE=IF

BE=CF
=>ΔIBE=ΔICF

c: Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC
=>ΔAIB=ΔAIC

=>góc IAB=góc IAC

=>AI là phân giáccủa góc BAC