K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

A B C E D k

AE = 1/3.AC (gt)  => AE = 1/2EC 

mà EC = EB (gt)

=> AE = 1/2EB 

tam giác EAB vuông tại A 

=> góc EBA = 30 (xem bổ đề để biết  thêm chi tiết)    (1)

tam giác EAB vuông tại A  

=> góc EBA + góc BEA = 90 (đl)

=> góc BEA = 90 - 30 = 60 

góc BEA + góc BEC = 180 (kb)

=> góc BEC = 180 - 60 = 120 

EB = EC (Gt) => tam giác EBC cân tại E (đn) => góc EBC = (180 - góc BEC) : 2 (đl)

=> góc EBC = (180 - 120) : 2 = 30 (2)

(1); (2); BE nằm giữa BA và BC 

=> BE là phân giác của góc ABC (đn)

b, xét tam giác ABE và tam giác ADB có : AB chung

AE = AD (gt)

góc BAE = góc BAD = 90 

=> tam giác ABE = tam giác ADB (2cgv)

=> góc ABE = góc ABD (đn)

mà góc ABE = 30

=> góc ABD = 60

có : góc ABD + góc ABE + góc EBC = góc CBD

góc ABD = góc ABE = góc EBC = 30

=> góc CBD = 30.3 = 90

=> BD _|_ BC (đn)

c, xét tam giác ECK và tam giác EBK có : EK chung

góc EKB = góc EKC = 90 

EB = ED (gt)

=> tam giác EKC = tam giác EKB (ch - cgv)

=> KC = KB (đn)

2 tháng 5 2022

a ). Vì góc BAE = 90 độ = > góc BAD = 90 độ (kề bù)

=> t/g ABD và t/g ABE là t/g vuông

Xét 2 t/g vuông ABD và vuông ABE có:

BA cạnh chung

AD = AE (gt) 

do đó : t/g ABD = t/g ABE ( cạnh góc vuông - cạnh góc vuông ).

=> BD = BE ( 2 cạnh tương ứng ) (1)

góc BDA = góc BED ( 2 góc tương ứng ( 2)

Từ (1) và (2) suy ra t/g BDE là t/g đều.

b ) Giả thiết góc BCA = góc ABE (3)

Ta có : EB = EC => t/g BEC cân tại E

=> góc EBC = góc ECB (4)

Từ (3) và (4) suy ra : góc ABE = góc CBE 

=> B là đường phân giác góc ABC hay B là phân giác của ABC.

c ) kẻ EK vuông BC tại K

ta có : góc BKE = 90 độ 

mà DB // EK (gt)

=> góc DBC = 90 độ ( đồng vị  với góc BKE)

=> BD vuông góc BC

d ) Xét 2 t/g vuông KEB và t/g vuông KEC có :

 EB = EC (gt)

góc EBK = góc ECK ( cmt )

do đó : t/g KEB = t/g KEC ( cạnh huyền - góc nhọn).

=> KB = KC ( 2 cạnh tương ứng ).

e ) Xét thấy t/g có đường cao FK vuông góc BC (5)

đường cao CA vuông góc BF (6)

Cả 2 đường cao đều cắt nhau tại E 

=> E là trực tâm của t/g FBC 

=> BE là đường cao thứ 3 của t/g FBC đi qua điểm E và cắt 2 đường cao (5) và (6)

=> BE vuông góc CF 

( hình em tự vẽ nhé ) .

13 tháng 4 2019

adult pron

17 tháng 12 2021

a) Nối A và D lại, ta đc: ΔABD & ΔADC

Ta có: D là trung điểm BC => BD=DC

Xét ΔABD & ΔADC có:

AB=AC(gt) ; BD=DC ; AD=AD

=> ΔADB = ΔADC

17 tháng 12 2021

1a. Xét △ABD và △ACD có:

\(AB=BC\left(gt\right)\)

\(\hat{BAD}=\hat{CAD}\left(gt\right)\)

\(AD\) chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
 

b/ Từ a suy ra \(BD=CD\) (hai cạnh tương ứng).

 

2a. Xét △ABD và △EBD có:

\(AB=BE\left(gt\right)\)

\(\hat{ABD}=\hat{EBD}\left(gt\right)\)

\(BD\) chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
 

b/ Từ a suy ra \(\hat{DEB}=90^o\) (góc tương ứng với góc A).
 

c/ Xét △ABI và △EBI có:

\(AB=BE\left(gt\right)\)

\(\hat{ABI}=\hat{EBI}\left(do\text{ }\hat{ABD}=\hat{EBD}\right)\)

\(BI\) chung

\(\Rightarrow\Delta ABI=\Delta EBI\left(c.g.c\right)\)

\(\Rightarrow\hat{AIB}=\hat{EIB}=\dfrac{180^o}{2}=90^o\)

Vậy: \(BD\perp AE\)

14 tháng 12 2022

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do dó: ΔBAD=ΔBED

=>DA=DE
b: Sửa đề: BD vuông góc với AE

Ta có: BA=BE

DA=DE

Do đó; BD là trung trực của AE

=>BD vuông góc với AE

c: Xét ΔBFC có BA/AF=BE/EC

nên AE//CF

16 tháng 1 2020

a) Xét \(\Delta ABC\) có:

\(AB=AC\left(gt\right)\)

=> \(\Delta ABC\) cân tại A.

=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).

b) Ta có: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

\(\widehat{ECK}=\widehat{ACB}\) (vì 2 góc đối đỉnh).

=> \(\widehat{ABC}=\widehat{ECK}.\)

Hay \(\widehat{DBH}=\widehat{ECK}.\)

Xét 2 \(\Delta\) vuông \(DBH\)\(ECK\) có:

\(\widehat{DHB}=\widehat{EKC}=90^0\left(gt\right)\)

\(DB=EC\left(gt\right)\)

\(\widehat{DBH}=\widehat{ECK}\left(cmt\right)\)

=> \(\Delta DBH=\Delta ECK\) (cạnh huyền - góc nhọn).

=> \(DH=EK\) (2 cạnh tương ứng).

c) Xét 2 \(\Delta\) vuông \(DHI\)\(EKI\) có:

\(\widehat{DHI}=\widehat{EKI}=90^0\)

\(DH=EK\left(cmt\right)\)

\(\widehat{DIH}=\widehat{EIK}\) (vì 2 góc đối đỉnh)

=> \(\Delta DHI=\Delta EKI\) (cạnh góc vuông - góc nhọn kề).

=> \(DI=EI\) (2 cạnh tương ứng).

=> \(I\) là trung điểm của \(DE\left(đpcm\right).\)

Chúc bạn học tốt!

Bài 1:

a) Sai đề rồi bạn, đáng lý ra phải là AB=AF mới đúng

Xét ΔABE vuông tại E(AD⊥BE) và ΔAFE vuông tại E(AD⊥BE,F∈BE) có

AE chung

\(\widehat{BAE}=\widehat{FAE}\)(do AE là tia phân giác của góc A)

Do đó: ΔABE=ΔAFE(cạnh góc vuông, góc nhọn kề)

⇒AB=AF(hai cạnh tương ứng)

b) Xin lỗi bạn, mình chỉ biết làm theo cách lớp 8 thôi nhé

Xét tứ giác HFKD có HF//DK(do HF//BC,D∈BC) và HF=DK(gt)

nên HFKD là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒HD//KF và HD=KF(hai cạnh đối trong hình bình hành HFKD)

c)

Xét ΔABC có AB<AC(gt)

mà góc đối diện với cạnh AB là góc C

và góc đối diện với cạnh AC là góc B

nên \(\widehat{C}< \widehat{B}\)(định lí về quan hệ giữa cạnh và góc đối diện trong tam giác)

hay \(\widehat{ABC}>\widehat{C}\)(đpcm)