Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC cân tại A(gt)
nên AB=AC
BD là trung tuyến,nên AD=DC
=> S(ABD=S(BDC) (t/c đường trung tuyến)
Ta có:
AD là cạnh đối diện của góc ABD
DC là cạnh đối diện của góc DBC
Do AD=DC
=> góc ABD=góc DBC( quan hệ giữa góc và cạnh đối diện) (1)
=>BD là phân giác của tam giác ABC
=>tam giác ABC cân tại B( t/c tam giác cân)
=> AB=BC
Mà AB=AC (ABC cân tại A)
Từ đó=>BC=AC
=> tam giác ABC đều (2)
Kéo dài AE cắt BC tại H:
góc ABD=góc DAE=góc CAH ( gt) (3)
Từ (1),(3)=>góc DBC=góc CAH
Mặt khác từ (2),suy ra:
AH là trung tuyến,là phân giác của tam giác ABC
a) Xét 2 tgiac vuông: tgiac CDK và tgiac ADG có:
CD = AD
góc CDK = ADG
suy ra: tgiac CDK = tgiac ADG (ch_gn)
=> CK = AG; góc DCK = góc DAG
Xét tgiac KAC và tgiac GCA có:
CK = AG
góc KCA = góc GAC
cạnh AC chung
suy ra: tgiac KAC = tgiac GCA
=> AK = CG
Kẻ AF và CG cùng vuông góc với BD, CH vuông góc với AE.
Xét tam giác ABF và tam giác CAH có:
AFB=CHA=90
AB=CA (vì tam giác abc cân tại A)
ABF=CAH (gt)
=>Tam giác ABF=Tam giác CAH (ch-gn)
=>AF=CH (2 cạnh tương ứng) (1)
Xét tam giác ADF và tam giác CDG có:
AFD=CGD=90
AD=CD (vì D là trung điểm của AC)
ADF=CDG (2 góc đối đỉnh)
=>Tam giác ADF=Tam giác CDG (ch-gn)
=>AF=CG (Hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: CH=CG
Xét tam giác CEH và tam giác CEG có:
CH=CG (cmt)
CHE=CGE=90
EC cạnh chung
=>Tam giác CEH=Tam giác CEG (ch-cgv)
=>CEH=CEG (hai góc tương ứng)
Mà CEH là góc ngoài đỉnh E của tam giác AEC
CEG là góc ngoài đỉnh E của tam giác BEC
=>CEH=ECA+EAC và CEG=EBC+ECB
=>ECA+EAC=EBC+ECB (vì CEH+CEG cmt)
=>ECA+EBA=EBC+ECB (vì DAE=ABD) (1)
Lại có: Tam giác ABC cân tại A =>ACB=ABC
=>ECA+ECB=EBC+EBA (2)
Cộng vế theo vế đẳng thức (1) và (2), ta được:
ECA+EBA+ECA+ECB=EBC+ECB+EBC+EBA
=>2ECA+EBA+ECB=2EBC+ECB+EBA
=>2ECA=2EBC
=>ECA=EBC
a) Nối A và D lại, ta đc: ΔABD & ΔADC
Ta có: D là trung điểm BC => BD=DC
Xét ΔABD & ΔADC có:
AB=AC(gt) ; BD=DC ; AD=AD
=> ΔADB = ΔADC
1a. Xét △ABD và △ACD có:
\(AB=BC\left(gt\right)\)
\(\hat{BAD}=\hat{CAD}\left(gt\right)\)
\(AD\) chung
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b/ Từ a suy ra \(BD=CD\) (hai cạnh tương ứng).
2a. Xét △ABD và △EBD có:
\(AB=BE\left(gt\right)\)
\(\hat{ABD}=\hat{EBD}\left(gt\right)\)
\(BD\) chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
b/ Từ a suy ra \(\hat{DEB}=90^o\) (góc tương ứng với góc A).
c/ Xét △ABI và △EBI có:
\(AB=BE\left(gt\right)\)
\(\hat{ABI}=\hat{EBI}\left(do\text{ }\hat{ABD}=\hat{EBD}\right)\)
\(BI\) chung
\(\Rightarrow\Delta ABI=\Delta EBI\left(c.g.c\right)\)
\(\Rightarrow\hat{AIB}=\hat{EIB}=\dfrac{180^o}{2}=90^o\)
Vậy: \(BD\perp AE\)