K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2017

Hình tự vẽ.

a) Áp dụng định lý pytago vào \(\Delta\)ABH vuông tại H và \(\Delta\)ACH vuông tại H có:

AB2 = AH2 + HB2 (1)

AC2 = AH2 + HC2 (2)

Cộng vế (1) và (2) ta đc:

AB2 + AH2 + HC2 = AC2 + AH2 + HB2

\(\Rightarrow\) AB2 + HC2 = AC2 + HB2 \(\rightarrow\) \(đpcm\)

b) Áp dụng định lý pytago vào \(\Delta\)BHD vuông tại H và \(\Delta\)CHD vuông tại H có:

BD2 = HD2 + BH2 (3)

DC2 = HD2 + CH2 (4)

Cộng vế (3) với (2); (4) với (1) ta được:

AB2 + DC2 = AH2 + BH2 + HD2 + CH2

AC2 + BD2 = AH2 + CH2 + HD2 + BH2

\(\Rightarrow AB^2+DC^2=AC^2+BD^2\rightarrowđpcm\)

8 tháng 2 2017

A B C H D

2 tháng 5 2016

A C B H E 8cm 6cm

a)

Áp dụng định lý Py-ta-go vào tam giác vuông ABC:

BC2= AB2+AC2= 62+82= 36 + 64= 100

\(\Rightarrow BC=\sqrt{100}=10cm\)

b)

Xét tam giác AHD và tam giác AHB:

AHD=AHB = 90o

AH chung

HD=HB

\(\Rightarrow\)tam giác AHD = tam giác AHB (2 cạnh góc vuông)

\(\Rightarrow\)AB=AD (2 cạnh tương ứng)

c)

Xét tam giác AHB và tam giác EHD:

HA = HE

AHB=EHD (đối đỉnh)

HD=HB

\(\Rightarrow\)tam giác AHB = tam giác EHD (c.g.c)

\(\Rightarrow\)BAH=DEH (2 góc tương ứng)

Ta có:

         BAH+HAC = 90o (phụ nhau)

\(\Leftrightarrow\)   DEH +HAC =90o 

\(\Rightarrow\)tam giác ACE vuông tại C

\(\Rightarrow\)ED vuông góc với AC

d)

Ta có : AH là cạnh góc vuông lớn của tam giác AHD.

              DH là cạnh góc vuông bé của tam giác AHD

\(\Rightarrow\)AH > DH (1)

Mà: AE = 2 * AH           (2)

       BD= 2* DH             (3)

\(\Rightarrow\)AE > BD

2 tháng 5 2016

B A C H E D

a,Áp dụng định lí Pytago vào tam giác vuông ABC, ta có:

BC2=AB2+AC2

\(\Rightarrow\) BC2=62+82=36+64=100

\(\Rightarrow\) BC=\(\sqrt{100}\) =10 (cm)

b,Xét 2 tam giác vuông AHB và AHD có: góc BHA=góc DHA(=90 độ ); HB = HD ( gt );HA chung

\(\Rightarrow\) tam giác AHB = tam giác AHD. suy ra AB = AD ( 2 cạnh tương ứng )

c, Xét tam giác BHA và tam giác CHE có: HB=HC(gt);HA=HE (gt);góc BHA= góc CHE (đối đỉnh)

\(\Rightarrow\) tam giác BHA = tam giác CHE ( c.g.c). Suy ra góc ABC = góc ECB ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong nên BA//EC.

Ta có BA//EC mà BA vuông góc với AC nên EC vuông góc vói AC

                                            

a) Xét ΔABC vuông tại A và ΔADE vuông tại A có

AC=AE(gt)

AB=AD(gt)

Do đó: ΔABC=ΔADE(hai cạnh góc vuông)

b) Ta có: ΔABC vuông tại A(gt)

\(\widehat{ACB}+\widehat{B}=90^0\)(hai góc phụ nhau)(1)

Ta có: ΔAHB vuông tại H(AH⊥BC)

\(\widehat{BAH}+\widehat{B}=90^0\)(hai góc phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{ACB}=\widehat{BAH}\)

hay \(\widehat{ACH}=\widehat{BAH}\)(đpcm)

28 tháng 3 2020

Các trường hợp bằng nhau của tam giác vuông

b) ΔABH vuông tai H nên

\(\widehat{B}+\widehat{BAH}+\widehat{AHB}=180^0\)

=> \(\widehat{BAH}=180^0-\widehat{B}-\widehat{AHB}=180^0-\widehat{B}-90^0\) (1)

ΔABC vuông tại A nên:

\(\widehat{B}+\widehat{BAC}+\widehat{ACB}=180^0\)

=> \(\widehat{ACB}=180^0-\widehat{B}-\widehat{BAC}=180^0-\widehat{B}-90^0\) (2)

Từ (1) và (2) => \(\widehat{BAH}=\widehat{ACB}\)