K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2016

a) Xét tam giác BEC

Ta có :

tam giác BEC nt (O)

BC đường kính

=> tam giác BEC vuông tại E

Xét tam giác BDC

Ta có :

tam giác BDC nt (o)

BC đường kính

=> tam giác BDC vuông tại D

Ta có:

góc BEC vuông tại E

góc BDC vuông tại D

Mà EC cắt DB tại H

=> H là trực tâm

=> AH vuông góc Với BC tại F

c) Xét tg BEHF

Ta có 

góc BEH= 90 độ

góc BFH = 90 độ

=> góc BEC + góc BDC = 90 độ + 90 độ = 180 độ

=>  tg BEHF nt(tổng 2 góc đối bằng 180 độ )

Ta có: B, E, D, F thuộc (O)

=> tg BEDF nt (O)

=> góc EBD = góc EFD ( 1 )

ta có: tg BEHF nt

=> góc EBH = góc EFH ( 2 )

từ (1) và (2)

=> góc EFD = góc EFH

=> AF // AF

23 tháng 8 2021

nt là j vậy

a: góc BEC=1/2*180=90 độ

góc BDC=1/2*180=90 độ

góc AEH+góc ADH=180độ

=>AEHD nội tiếp

b: Xet ΔABC có BD,CE là đường cao

BD cắt CE tại H

=>H là trực tâm

=>AH vuông góc BC

Xét ΔSBE và ΔSDC co

góc SBE=góc SDC

góc S chung

=>ΔSBE đồng dạngvơi ΔSDC

=>SB/SD=SE/SC

=>SB*SC=SD*SE

c: góc AFC=góc AEC=90 độ

=>AEFC nội tiếp

=>góc FEC=góc FAC

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
1 tháng 4 2019

H A B C D E O F

a) Xét tam giác AEC và tam giác ADB

có:

\(\widehat{AEC}=\widehat{ADB}=90^o\)

\(\widehat{EAC}=\widehat{DAB}\)( đối đỉnh)

=> \(\Delta AEC~\Delta ADB\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\Rightarrow AE.AB=AD.AC\)

b) Xét tam giác HCB có hai đường cao CD và BE cắt nhau tại A 

=> A là trực tâm tam giác ACB

=> HA vuông BC

=> AF vuông BC

Xét tứ giác BFEH có:

\(\widehat{BFH}=\widehat{HEB}=90^o\)

=> BFEH nội tiếp

c) Ta có: \(\widehat{EOC}=2\widehat{EBC}\)( góc ở tâm có độ lớn gấp 2 lần góc nội tiếp cùng chắn một cung)

Xét tứ giác ADBF có: \(\widehat{ADB}+\widehat{AFB}=90^o+90^o=180^o\)

=> ADBF nội tiếp 

=> \(\widehat{ABF}=\widehat{ADF}\)( cùng chắn cung AF) hay \(\widehat{EBC}=\widehat{CDF}\)

Mặt khác \(\widehat{EDC}=\widehat{EBC}\)( cùng chắn cung EC)

=> \(\widehat{EOC}=2.\widehat{EBC}=\widehat{CDF}+\widehat{EDC}=\widehat{EDF}\)

=> \(\widehat{FOE}+\widehat{FDE}=\widehat{FOE}+\widehat{EOC}=180^o\)( hai góc bù nhau)

=> Tứ giác DEOF nội tiếp