Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAIB và ΔAIE có
AI chung
\(\widehat{BAI}=\widehat{EAI}\)
AB=AE
Do đó: ΔAIB=ΔAIE
b: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: DB=DE
Ta có: AB=AE
nên A nằm trên đường trung trực của BE(1)
Ta có: DB=DE
nên D nằm trên đường trung trực của BE(2)
Từ (1) và (2) suy ra AD là đường trung trực của BE
hay AD\(\perp\)BE
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(AHK\) và \(DHB\) có:
\(AH=DH\left(gt\right)\)
\(\widehat{AHK}=\widehat{DHB}\) (vì 2 góc đối đỉnh)
\(HK=HB\left(gt\right)\)
=> \(\Delta AHK=\Delta DHB\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta AHK=\Delta DHB.\)
=> \(\widehat{AKH}=\widehat{DBH}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AK\) // \(BD.\)
c) Ta có: \(\widehat{AHB}+\widehat{DHB}=180^0\) (vì 2 góc kề bù).
=> \(90^0+\widehat{DHB}=180^0\)
=> \(\widehat{DHB}=180^0-90^0\)
=> \(\widehat{DHB}=90^0.\)
Xét 2 \(\Delta\) vuông \(ABH\) và \(DBH\) có:
\(\widehat{AHB}=\widehat{DHB}=90^0\left(cmt\right)\)
\(AH=DH\left(gt\right)\)
Cạnh BH chung
=> \(\Delta ABH=\Delta DBH\) (2 cạnh góc vuông tương ứng bằng nhau).
=> \(AB=BD\) (2 cạnh tương ứng).
d) Xét 2 \(\Delta\) \(ABH\) và \(DKH\) có:
\(AH=DH\left(gt\right)\)
\(\widehat{AHB}=\widehat{DHK}\) (vì 2 góc đối đỉnh)
\(BH=KH\left(gt\right)\)
=> \(\Delta ABH=\Delta DKH\left(c-g-c\right)\)
=> \(\widehat{ABH}=\widehat{DKH}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(DK.\)
Lại có: \(AB\perp AC\) (vì \(\Delta ABC\) vuông tại A).
=> \(DK\perp AC.\)
Mà \(KI\perp AC\left(gt\right)\)
=> \(DK\) và \(KI\) trùng nhau.
=> 3 điểm \(D,K,I\) thẳng hàng (đpcm).
Chúc bạn học tốt!
Xét ΔAIE và ΔAIB có
AE=AB
góc EAI=góc BAI
AI chung
=>ΔAIE=ΔAIB
Xét ΔBAK có
BI vừa là đường cao, vừa là trung tuyến
=>ΔBAK cân tại B
AI GIÚP MÌNH VỚI!
MÌNH NHẦM
CÂU a LÀ CHỨNG MINH TAM GIÁC EIB=AIE