K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

a: Xét ΔAIB và ΔAIE có 

AI chung

\(\widehat{BAI}=\widehat{EAI}\)

AB=AE

Do đó: ΔAIB=ΔAIE

b: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: DB=DE

Ta có: AB=AE

nên A nằm trên đường trung trực của BE(1)

Ta có: DB=DE

nên D nằm trên đường trung trực của BE(2)

Từ (1) và (2) suy ra AD là đường trung trực của BE

hay AD\(\perp\)BE

26 tháng 11 2017

tớ không hiểu ý của đề

15 tháng 1 2020

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(AHK\)\(DHB\) có:

\(AH=DH\left(gt\right)\)

\(\widehat{AHK}=\widehat{DHB}\) (vì 2 góc đối đỉnh)

\(HK=HB\left(gt\right)\)

=> \(\Delta AHK=\Delta DHB\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta AHK=\Delta DHB.\)

=> \(\widehat{AKH}=\widehat{DBH}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AK\) // \(BD.\)

c) Ta có: \(\widehat{AHB}+\widehat{DHB}=180^0\) (vì 2 góc kề bù).

=> \(90^0+\widehat{DHB}=180^0\)

=> \(\widehat{DHB}=180^0-90^0\)

=> \(\widehat{DHB}=90^0.\)

Xét 2 \(\Delta\) vuông \(ABH\)\(DBH\) có:

\(\widehat{AHB}=\widehat{DHB}=90^0\left(cmt\right)\)

\(AH=DH\left(gt\right)\)

Cạnh BH chung

=> \(\Delta ABH=\Delta DBH\) (2 cạnh góc vuông tương ứng bằng nhau).

=> \(AB=BD\) (2 cạnh tương ứng).

d) Xét 2 \(\Delta\) \(ABH\)\(DKH\) có:

\(AH=DH\left(gt\right)\)

\(\widehat{AHB}=\widehat{DHK}\) (vì 2 góc đối đỉnh)

\(BH=KH\left(gt\right)\)

=> \(\Delta ABH=\Delta DKH\left(c-g-c\right)\)

=> \(\widehat{ABH}=\widehat{DKH}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(DK.\)

Lại có: \(AB\perp AC\) (vì \(\Delta ABC\) vuông tại A).

=> \(DK\perp AC.\)

\(KI\perp AC\left(gt\right)\)

=> \(DK\)\(KI\) trùng nhau.

=> 3 điểm \(D,K,I\) thẳng hàng (đpcm).

Chúc bạn học tốt!

Xét ΔAIE và ΔAIB có

AE=AB

góc EAI=góc BAI

AI chung

=>ΔAIE=ΔAIB

Xét ΔBAK có

BI vừa là đường cao, vừa là trung tuyến

=>ΔBAK cân tại B