Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=4cm
b: Xét ΔAMH vuông tại H và ΔAMN vuông tại N có
AM chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔAMN
Suy ra: MH=MN; AH=AN
hay AM là đường trung trực của NH
c: Xét ΔAHN có AH=AN
nên ΔAHN cân tại A
mà \(\widehat{HAN}=60^0\)
nên ΔAHN đều
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM vừa là đường cao vừa là đường phân giác
Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
b: Ta có: ΔAHK cân tại A
mà AM là đường phân giác
nên AM là đường trung trực của HK
mình không biết chỗ nào vẽ được hình cả , mong bạn thông cảm nha , bạn hỏi thầy cô giao ý
tu ve hinh :
a, xet tamgiac MBK va tamgiac MCH co :
goc BKM = goc CHM = 90o do MK | AB va MH | AC
tamgiac ABC can tai A (gt) => goc ABC = goc ACB (tc)
MB = MC do M la trung diem cua BC (gt)
=> tamgiac MBK = tamgiac MCH (ch - gn)
a, xét tam giác BMH và tam giác CMK có : BM = MC do M là trđ của BC (Gt)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc BHM = góc CKM = 90
=> tam giác BMH = tam giác CMK (ch-gn)
b, tam giác BMH = tam giác CMK (câu a)
=> HM = MK (đn)
xét tam giác AMH và tam giác AMK có : AM chung
góc AHM = góc AKM = 90
=> tam giác AMH = tam giác AMK (ch-cgv)
c, tam giác ABC cân tại A (gt)
AM là trung tuyến
=> AM _|_ BC (định lí)
c,
- Xét Δ AHM và Δ AKM có:
+ Góc AHM = góc AKM = 900 (gt)
+ AM là cạnh chung
+ Góc HAM = góc KAM (AM là phân giác)
=> ΔAHM = Δ AKM (cạnh huyền - góc nhọn)
=>AH = AK (hai cạnh tương ứng )
=> Δ AHK cân tại A (gt)
=> +) Góc AHK = (180 - góc BAC) / 2
+) Góc ACB = (180 - góc BAC) / 2
=> Góc AHK = góc ACB
mà hai góc này ở vị trí đồng vị
=> HK // BC (đpcm)
mình chỉ giúp ý d theo mong muốn của bạn thôi :)
Có : AH = AK ( cái này bạn chứng minh ở câu trên chưa mình không biết; nếu chưa thì bạn chứng minh đi nhé )
=> A thuộc đường trung trực của HK
và MH=MK
=> M thuộc đường trung trực của HK
=> AM là đường trung tực của HK
=> AM ⊥ HK
Xét \(\Delta AMH\)vuông ở H và \(\Delta AMK\)vuông ở K có :
\(\hept{\begin{cases}\widehat{MAH=\widehat{MAK}}\\AM\end{cases}}\)
\(\Rightarrow\)đpcm \(\Rightarrow AH=AK\)
Gọi giao của AM và HK là I
( Rồi xét 2 tam giác AIH và AIK )
Xét AIH và AIK để CM : góc I vuông hả ?