K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
MV
12 tháng 1 2018
\(u_n=1+2\left(n-1\right)=1+2n-2=2n-1\left(\text{*}\right)\)
Chứng minh
Với \(n=1\)
\(VT=1;VP=2\cdot1-1=1=VT\)
Vậy \(\left(\text{*}\right)\) đúng với \(n=1\)
Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\ge1\) tức là
\(u_k=u_{k-1}+2=2k-1\)
Ta chứng minh \(\left(\text{*}\right)\) đúng với \(n=k+1\)
Thật vậy, từ giả thuyết quy nạp ta có
\(u_{k+1}=u_k+2=2k-1+2=2k+2-1=2\left(k+1\right)-1\)
Vậy ...
NV
Nguyễn Việt Lâm
Giáo viên
25 tháng 4 2019
\(\left\{{}\begin{matrix}u_{14}=u_1+13d=18\\u_4=u_1+3d=-12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-21\end{matrix}\right.\)
Tổng 16 số hạng đầu tiên:
\(S_{16}=\frac{16\left(2u_1+15d\right)}{2}=24\)
A=B/2:B=A (nhap tren may)
dc 3/2 3/4 3/8
=> cttq Un= 3/(2^(n-1))
Ta thấy: U1=3; Un+1=\(\dfrac{U_n}{2}\Rightarrow U_n=\dfrac{U_{n-1}}{2}\)
\(\Rightarrow U_n=U_1\cdot q^{n-1}=3\cdot\left(\dfrac{1}{2}\right)^{n-1}=\dfrac{3}{2^{n-1}}\)(công thức cấp số nhân).
Chúc bạn học tốt!