Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Ta có:
\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)
Vậy \(S\) \(\text{⋮}\) \(-20\)
Bài 1:
Ta có:
\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)
\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)
\(=\left(-12\right).m^2.3.n^3\)
\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)
Xét: \(m^2\ge0\) với V m
3>0 nên \(m^2.3\ge0\) với V m
Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)
-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)
Vậy với n<0 và mọi m thì \(A\ge0\)
Lời giải:
\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)
Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)
Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)
Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)
Đáp án A
Ta có u n + 1 2 = u n 2 + 2 = u n - 1 2 + 2 . 2 = u n - 2 2 + 2 . 3 = u 1 2 + 2 n
Do đó S = 1001 u 1 2 + 2 ( 0 + 1 + 2 + . . . + 1000 ) = 1001 + 2 . 1001 . 1000 2 = 1002001 .
Chọn C.
Phương pháp: Dự đoán số hạng tổng quát và chứng minh bằng quy nạp.
Cách giải: Ta có
Ta có:
U n = 1 n 3 4 + n 3 + 3 n 2 + 3 n + 1 4 1 n 3 + 2 n 2 + n 4 + n 3 + n 2 4 = 1 n n 4 + n n + 1 4 1 n + 1 n 4 + n + 1 n + 1 4 = 1 n n 4 + n + 1 4 1 n + 1 n 4 + n + 1 4 = 1 n + n + 1 1 n 4 + n + 1 4 = n + 1 4 - n 4 n + 1 + n 1 n + 1 - n = n + 1 4 - n 4 , n ≥ 1
Khi đó
S = u 1 + u 2 + . . + u 2018 4 - 1 = 2 4 - 1 4 + 3 4 - 2 4 + . . + 2018 4 4 - 2018 4 - 1 4 = 2018 4 4 - 1 = 2017
Đáp án B