Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Ta có
n − 1 n 2 + 3 n + 2 = n − 1 n + 1 n + 2 = A n + 1 + B n + 2 ⇒ A + B = 1 2 A + B = − 1 ⇔ A = − 2 B = 3 .
Lại có 3 u n + 1 = 2 u n − 2 n + 1 + 3 n + 2
⇔ 3 u n + 1 − 1 n + 2 = 2 u n − 1 n + 1 .
Đặt v n = u n − 1 n + 1 ⇒ v 1 = 1 2
và v n = u n − 1 n + 1 → v n
là cấp số nhân với v 1 = 1 2 ; q = 1 3
⇒ v n = 1 2 . 2 3 n − 1 = 3 4 . 2 3 n → u n = v n + 1 n + 1 = 3 4 . 2 3 n + 1 n + 1 = 2 n − 2 3 n − 1 + 1 n + 1 .
⇒ u 2018 = 2 n − 2 3 n − 1 + 1 n + 1 n = 2018 = 2 2016 3 2017 + 1 2019 .
Đáp án A
= > U n = ( 1 2 + 1 ) ( 2 2 + 1 ) . ( 3 2 + 1 ) ( 4 2 + 1 ) ... [ ( 2 n − 1 ) 2 + 1 ] [ ( 2 n ) 2 + 1 ] ( 2 2 + 1 ) ( 3 2 + 1 ) . ( 4 2 + 1 ) ( 5 2 + 1 ) ... [( 2 n ) 2 + 1 ] [ ( 2 n + 1 ) 2 + 1 ] = > U n = 2 ( 2 n + 1 ) 2 + 1
Bài 2:
a) Ta có:
\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)
Vậy \(S\) \(\text{⋮}\) \(-20\)
Bài 1:
Ta có:
\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)
\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)
\(=\left(-12\right).m^2.3.n^3\)
\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)
Xét: \(m^2\ge0\) với V m
3>0 nên \(m^2.3\ge0\) với V m
Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)
-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)
Vậy với n<0 và mọi m thì \(A\ge0\)
Đáp án B.
Ta có u n = u n − 1 + n − 1 3 ⇔ u n − u n − 1 = n − 1 3 ⇒ u n − 1 − u n − 2 = n − 2 3 .
Tương tự, ta được u 2 − u 1 = 1 3 . Cộng trừ 2 vế suy ra u n − u 1 = 1 3 + 2 3 + ... + n − 1 3
⇔ u n − 1 = n n − 1 2 2 ⇒ u n − 1 = n n − 1 2 ≥ 2039190 ⇔ n ≥ 2020.