Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh bài toán \(a_1\le a_2\le...\le a_n\) thỏa mãn \(a_1+a_2+...+a_n=0;\left|a_1\right|+\left|a_2\right|+...+\left|a_n\right|=1\) thì \(a_n-a_1=\frac{2}{n}\)
Từ điều kiện trên ta có \(k\in N\) sao cho \(a_1\le a_2\le...a_k\le0\le a_{k+1}\le...\le a_n\)
\(\Rightarrow\hept{\begin{cases}\left(a_1+a_2+...+a_k\right)+\left(a_{k+1}+...+a_n\right)=0\\-\left(a_1+a_2+...+a_k\right)+\left(a_{k+1}+...+a_n\right)=\frac{1}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a_1+a_2+...+a_k=-\frac{1}{2}\\a_{k+1}+...+a_n=\frac{1}{2}\end{cases}}\). Mà
\(a_1\le a_2\le...\le a_k\Rightarrow a_1\le-\frac{1}{2k};a_{k+1}\le...\le a_n\Rightarrow a_n\ge\frac{1}{2k}\)
\(\Rightarrow a_n-a_1\ge\frac{1}{2k}+\frac{1}{2\left(n-k\right)}=\frac{n}{2k\left(n-k\right)}\ge\frac{n}{2\left(\frac{k+n-k}{2}\right)^2}=\frac{2}{n}\)
Áp dụng vào bài chính theo giải thiết ta có:
\(\hept{\begin{cases}\frac{x_1}{2013}+\frac{x_2}{2013}+...+\frac{x_{192}}{2013}=0\\\left|\frac{x_1}{2013}\right|+\left|\frac{x_2}{2013}\right|+...+\left|\frac{x_{192}}{2013}\right|=0\end{cases}}\)
\(\Rightarrow\frac{x_{192}}{2013}-\frac{x_1}{2013}\ge\frac{2}{192}\Rightarrow x_{192}-x_1\ge\frac{2013}{96}\)
x1+x2+x3+...+x2008=2008
\(\Leftrightarrow\)(x1-1)+(x2-1)+(x3-1)+...+(x2008-1)=0 (1)
x31+x32+x33+...+x32008=x41+x42+x43+...+x42008
Lấy vế phải trừ vế trái ta được :
x31(x1-1)+x32(x2-1)+x33(x3-1)+...+x32008(x2008-1)=0 (2)
Lấy (1) (2) rồi đặt nhân tử chung là ra cái này
(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)=0
Ta thấy (x31-1)(x1-1) = (x1-1)(x21+x1+1)(x1-1) = (x1-1)2(x21+x1+1)\(\ge\)0 Với mọi x
CMTT : (x23-1)(x2-1) \(\ge\)0 Với mọi x
.............................................
(x20083-1)(x2008-1) \(\ge\)0 Với mọi x
\(\Rightarrow\)(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)\(\ge\)0
Mà(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)=0
Đến đây bạn tự suy ra x1=1; x2=1;...;x2008=1 nhé!
Mình hơi bận nên không giải tiếp được bán nhé!
Mong bạn thông cảm
\(max\left\{x_1;x_2;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
Đề Tuyển sinh lớp 10 chuyên toán ĐHSP Hà Nội 2012-2013
NGUỒN:CHÉP MẠNG,CHÉP Y CHANG CHỨ E KO HIỂU GÌ ĐÂU(vài dòng đầu)-lỡ như anh cần mak ko có key. ( VÔ TÌNH TRA TÀI LIỆU THÌ THẦY BÀI NÀY )
P/S:Xin đừng bốc phốt.
Để ý trong 2 số thực x,y bất kỳ luôn có
\(Min\left\{x;y\right\}\le x,y\le Max\left\{x,y\right\}\) và \(Max\left\{x;y\right\}=\frac{x+y+\left|x-y\right|}{2}\)
Ta có:
\(\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+.....+\left|x_n-x_1\right|}{2n}\)
\(=\frac{x_1+x_2+\left|x_1-x_2\right|}{2n}+\frac{x_2+x_3+\left|x_2-x_3\right|}{2n}+.....+\frac{x_3+x_4+\left|x_3-x_4\right|}{2n}+\frac{x_4+x_5+\left|x_4-x_5\right|}{2n}\)
\(\le\frac{Max\left\{x_1;x_2\right\}+Max\left\{x_2;x_3\right\}+.....+Max\left\{x_n;x_1\right\}}{n}\)
\(\le Max\left\{x_1;x_2;x_3;.....;x_n\right\}^{đpcm}\)
\(\left\{{}\begin{matrix}x_1+x_2+...+x_{2000}=a\left(1\right)\\x_1^2+x_2^2+...+x_{2000}^2=a^2\left(2\right)\\x_1^{2000}+x_2^{2000}+...+x_{2000}^{2000}=a^{2000}\left(3\right)\end{matrix}\right.\)
Từ (2)(3)\(\Rightarrow2\left(x_1x_2+x_2x_3+...+x_{2000}x_1\right)=0\)
\(\Rightarrow x_1=x_2=...=x_{2000}=0\)
Vậy hpt có nghiệm là x=0.
Đúng không ạ?
Một cửa hàng ngày thứ nhất bán 180 tạ gạo, ngày thứ hai bán 270 tạ gạo , ngày thứ ba bán kém hơn ngày thứ hai một nửa .Hỏi trung bình mỗi ngày cửa hàng bán được bao nhiêu tạ gạo ?
1) Xét hiệu :
\(\left(x_1+x_2+x_3\right)\left(y_1+y_2+y_3\right)-3\left(x_1y_1+x_2y_2+x_3y_3\right).\)
\(=x_1\left(y_1+y_2+y_3\right)-3x_1y_1+x_2\left(y_1+y_2+y_3\right)-3x_2y_2+x_3\left(y_1+y_2+y_3\right)-3x_3y_3.\)
\(=x_1\left(y_2+y_3-2y_1\right)+x_2\left(y_1+y_3-2y_2\right)+x_3\left(y_1+y_2-2y_3\right)\)
\(=x_1\left[\left(y_2-y_1\right)-\left(y_1-y_3\right)\right]+x_2\left[\left(y_3-y_2\right)-\left(y_2-y_1\right)\right]+x_3\left[\left(y_1-y_3\right)-\left(y_3-y_2\right)\right]\)
\(=\left(y_2-y_1\right)\left(x_1-x_2\right)+\left(y_1-y_3\right)\left(x_3-x_1\right)+\left(y_3-y_2\right)\left(x_2-x_3\right)\le0\)
Vì \(x_1\le x_2\le x_3;y_1\le y_2\le y_3\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-10\right)=\left(x_2-10\right)=\left(x_3-10\right)=...=\left(x_9-10\right)\\x_1+x_2+x_3+...+x_9=90\end{matrix}\right.\)
=>x1=x2=x3=...=x9=10
\(M=\frac{x_1^2+x_2^2+...+x_{2015}^2}{x_1\left(x_2+x_3+...+x_{2015}\right)}\ge\frac{x_1^2+\frac{\left(x_2+x_3+...+x_{2015}\right)^2}{2014}}{x_1\left(x_2+x_3+...+x_{2015}\right)}\)
\(=\frac{x_1}{x_2+x_3+...+x_{2015}}+\frac{x_2+x_3+...+x_{2015}}{2014x_1}\ge2\sqrt{\frac{1}{2014}}=\frac{2}{\sqrt{2014}}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x_2=x_3=...=x_{2015}\\\frac{x_1}{x_2+x_3+...+x_{2015}}=\frac{x_2+x_3+...+x_{2015}}{2014x_1}\end{cases}}\Leftrightarrow x_1=\sqrt{2014}x_2=...=\sqrt{2014}x_{2015}\)