K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2021

Số xấu thế nhỉ?

\(u_n=v_n+\dfrac{\sqrt{5}-3}{2}\)

\(\Rightarrow v_{n+1}+\dfrac{\sqrt{5}-3}{2}=-\dfrac{1}{3+v_n+\dfrac{\sqrt{5}-3}{2}}\)

\(\Rightarrow\left\{{}\begin{matrix}v_1=u_1-\dfrac{\sqrt{5}-3}{2}=\dfrac{5-\sqrt{5}}{2}\\v_{n+1}=\dfrac{\dfrac{3-\sqrt{5}}{2}v_n}{\dfrac{3+\sqrt{5}}{2}+v_n}\end{matrix}\right.\)

\(v_n=\dfrac{1}{y_n}\Rightarrow\dfrac{1}{y_{n+1}}=\dfrac{\dfrac{3-\sqrt{5}}{2}.\dfrac{1}{y_n}}{\dfrac{3+\sqrt{5}}{2}+\dfrac{1}{y_n}}\)

\(\Rightarrow\dfrac{1}{y_{n+1}}=\dfrac{3-\sqrt{5}}{2y_n\left(\dfrac{3+\sqrt{5}}{2}+\dfrac{1}{y_n}\right)}=\dfrac{3-\sqrt{5}}{\left(3+\sqrt{5}\right)y_n+2}\)

\(\Leftrightarrow y_{n+1}=\dfrac{\left(3+\sqrt{5}\right)y_n}{3-\sqrt{5}}+\dfrac{2}{3-\sqrt{5}}\)

\(\Rightarrow\left\{{}\begin{matrix}y_1=\dfrac{1}{v_1}=\dfrac{2}{5-\sqrt{5}}\\y_{n+1}=\dfrac{3+\sqrt{5}}{3-\sqrt{5}}y_n+\dfrac{2}{3-\sqrt{5}}\end{matrix}\right.\)

\(z_n=y_n+\dfrac{\sqrt{5}}{5}\Rightarrow\left\{{}\begin{matrix}z_1=y_1+\dfrac{\sqrt{5}}{5}=\dfrac{5+3\sqrt{5}}{10}\\z_{n+1}=\dfrac{3+\sqrt{5}}{3-\sqrt{5}}z_n\end{matrix}\right.\)

\(\Rightarrow z_n:csn-co:\left\{{}\begin{matrix}z_1=\dfrac{5+3\sqrt{5}}{10}\\q=\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\end{matrix}\right.\)

\(\Rightarrow z_{n+1}=\dfrac{5+3\sqrt{5}}{10}.\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n\)

\(\Rightarrow y_{n+1}=z_{n+1}-\dfrac{\sqrt{5}}{5}=\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}\)

\(v_{n+1}=\dfrac{1}{y_{n+1}}=\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}}\)

\(u_{n+1}=v_{n+1}+\dfrac{\sqrt{5}-3}{2}=\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}}+\dfrac{\sqrt{5}-3}{2}\)

Xét: 

\(u_{n+2}-u_{n+1}=\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}.\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n.\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)-\dfrac{\sqrt{5}}{5}}+\dfrac{\sqrt{5}-2}{2}-\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}}-\dfrac{\sqrt{5}-2}{2}\)

\(=\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n.\dfrac{3+\sqrt{5}}{3-\sqrt{5}}-\dfrac{\sqrt{5}}{5}}-\dfrac{1}{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{\sqrt{5}}{5}}\)

\(=\dfrac{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n-\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n.\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)}{.....}\)

\(=\dfrac{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n\left(1-\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)}{....}=\dfrac{\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}\right)^n.\left(-\dfrac{5+3\sqrt{5}}{2}\right)}{...}< 0\)

\(\Rightarrow\) dãy giảm

\(\Rightarrow u_1>u_2>....>u_n\)

\(\Rightarrow\lim\limits u_n=1\)

10 tháng 8 2022

Bn tham khảo đây nhé: https://diendantoanhoc.org/topic/140204-t%C3%A0i-li%E1%BB%87u-d%C3%A3y-s%E1%BB%91/

NV
7 tháng 2 2021

\(u_n-u_{n+1}=u_n+\left(1-u_{n+1}\right)-1\ge2\sqrt{u_n\left(1-u_{n+1}\right)}-1>0\)

\(\Rightarrow u_n>u_{n+1}\Rightarrow\) dãy giảm

Dãy giảm và bị chặn dưới bởi 0 nên có giới hạn hữu hạn.

Gọi giới hạn đó là k

\(\Rightarrow k\left(1-k\right)\ge\dfrac{1}{4}\Rightarrow\left(2k-1\right)^2\le0\Rightarrow k=\dfrac{1}{2}\)

Vậy \(\lim\left(u_n\right)=\dfrac{1}{2}\)

5 tháng 2 2023

Là 6