K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

1. Số thứ 100 là :

           1 + ( 100 - 1 ) x 3 = 298

2.Tổng của 100 số hạng đầu tiên là :

            ( 298 + 1 ) x 100 : 2 = 14950

3. Các số 111 , 22222 không có trong dãy số

nhớ k nha

1) ta có : ( x - 1 ) : 3 + 1 = 100

             ( x - 1 ) : 3 = 99

           x - 1 = 297

      => x = 298

vậy số thứ 100 của dãy là 298

A) SỐ 2020 CÓ THUỘC DÃY SỐ TRÊN

Số hạng thứ 100 của dãy số đó là :

2 + (100 - 1) x 4 = 398

Tổng 100 số hạng đầu tiên của dãy số đó là :

(2 + 398) x 100 : 2 = 20000

>>>>>> Lưu ý : Ta áp dụng các công thức với dãy số cách đều :

+) Tổng = (số đầu + số cuối) x số số hạng : 2.

+) Số hạng thứ n = số hạng thứ nhất + (n - 1) x khoảng cách giữa hai số liền nhau.

6 tháng 9 2015

Khoảng cách là 3 đơn vị

Số thứ 100 là : 3 x (100 - 1) + 4 = 301

Ta có dãy: 4+7+10+.....+301 = (301 + 4) x 100 : 2 = 15250

Số 111 không thuộc dãy vì không chia 3 dư 1

Số 22222 thuộc dãy vì chia 3 dư 1

3 tháng 9 2015

Ta thấy: 1=(1-1).4+1

              5=(2-1).4+1

              9=(3-1).4+1

              13=(4-1).4+1

              17=(5-1).4+1

              ………………

Quy luật: Mỗi số hạng trong dãy bằng số thứ tự của nó trừ 1 rồi nhân với 4 cuối cùng cộng thêm 1.

a) Gọi số n là số hạng thứ a của dãy.

Ta có: n=(a-1).4+1

=>3 số hạng tiếp theo của dãy là:(6-1).4+1=21

                                                     (7-1).4+1=25

                                                     (8-1).4+1=29

b)Số hạng thứ 2011 của dãy là: (2011-1).4+1=8041

c)Ta có:S=1+5+9+…+8041
=>\(S=\frac{\left(\left(8041-1\right):4+1\right).\left(8041+1\right)}{2}\)

=>\(S=\frac{\left(8040:4+1\right).8042}{2}\)

=>\(S=\left(2010+1\right).\frac{8042}{2}\)

=>\(S=2011.4021\)

=>\(S=8086231\)

3 tháng 9 2015

a) dạng tổng quát là: 4k + 1

3 số điền vào la 21;25;29

Số thứ 2011 : 4 x 2011 - 4 + 1 = 8041

22 tháng 8 2023

a) \(P=\left\{1;6;11;16;21;26;31;36;41;46;...\right\}\)

b) Số hạng thứ 100 của dãy số P :

\(\left(100-1\right).5+1=496\)

c) \(A=1+6+11+...+496\)

\(\Rightarrow A=\left[\left(496-1\right):5+1\right]\left(1+496\right):2\)

\(\Rightarrow A=100.497:2\)

\(\Rightarrow A=24850\)

22 tháng 8 2023

Tui nghĩ giống trí

21 tháng 1 2022

- Dãy số tổng quát: 2;22;23;...;2n(n thuộc N*)

- Số hạng thứ 100: 2100.

- Số hạng thứ 2022: 22022.

- Tổng 100 số hạng đầu tiên của dãy:

A=2+22+23+...+2100

=>2A=22+23+24+...+2101

=>2A-A=A=2101-2.

19 tháng 1 2022

Ta có: \(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};...;\dfrac{1}{x}\)

\(=\dfrac{1}{1.2};\dfrac{1}{2.3};\dfrac{1}{3.4};\dfrac{1}{4.5};...;\dfrac{1}{n\left(n+1\right)}\)

=> Số hạng thứ 100 và 2022 lần lượt là: \(\dfrac{1}{100.101}=\dfrac{1}{10100};\dfrac{1}{2022.2023}=\dfrac{1}{4090506}\)

Tổng 100 số hạng đầu tiên:

- Ta có: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...\)

\(\Rightarrow=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...+\left(-\dfrac{1}{100}+\dfrac{1}{100}\right)-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)

19 tháng 1 2022

-Dãy số tổng quát:

\(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};...;\dfrac{1}{n\left(n+1\right)}\)(n thuộc N*)

-Số hạng thứ 100 của dãy: \(\dfrac{1}{100\left(100+1\right)}=\dfrac{1}{10100}\)

-Số hạng thứ 2022 của dãy: \(\dfrac{1}{2022\left(2022+1\right)}=\dfrac{1}{4090506}\)

- Tổng 100 số hạng đầu tiên của dãy:

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{10100}\)=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{100.101}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

=\(1-\dfrac{1}{101}=\dfrac{100}{101}\)