Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AF}{FC}\)
Do đó: EF//BC
Xét tứ giác BEFC có EF//BC
nên BEFC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BEFC là hình thang cân
a,Xet tu giac ADHE co;
D la hinh chieu tren AB - HD vuong goc AB- gocADH= 90
E la hinh chieu tren AC - HE vuong goc AC- gocAEH=90
- Goc ADH= AEH =DAE =90
suy ra : Tg ADHE la hinh chu nhat
b, S=AB.AC = 1/2.6.10 =30 cm
a) xét tứ giác ADHE :
có góc ADH =góc HEA =DHE(900)
=)ADHE là HCN (DHNB)
Bạn tự vẽ hình nha:
a)Xét tứ giác AIHK, có:
góc A=90 độ(gt)
góc AIH =90 độ( D,H đx qua AB)
góc AKH=90 độ(H,E đx qua AC)
=> AIHK là hình chữ nhật
b)Vì D,H đx qua AB nên AB là đường trung trực của DH
=> AD=AH (1)
Vì H,E đx qua AC nên AC là đường trung trực của HE
=> AH=AE(2)
Từ (1) và (2) => AD=AE(*)
Tam giác ADH cân tại A (AH=AD) có AB là đtt nên AB cũng là đường phân giác, đường cao, đường trung tuyến
=> góc DAH=\(2.A_2\)
Tam giác AHE cân tại A (AH=AE) có AC là đtt nên AC cũng là đường phân giác, đường cao, đường trung tuyến
=> góc HAE=\(2.A_3\)
Ta có: góc DAH +góc HAE=\(2.A_2+2.A_3=2\left(A_2+A_3\right)=2.90\text{đ}\text{ộ}=180\text{đ}\text{ộ}\)
hay góc DAE=180 độ => 3 điểm D,A,E thẳng hàng (**)
Từ (*) và (**) => D,E đx qua A (đpcm)
c) Xét tam giác AIH và tam giác AKH, có:
góc AIH= góc AKH=90 độ
AH chung
AI=HK(AIHK là hcn)
=> tam giác AIH=tam giác AKH(ch_cgv)(3)
Xét tam giác ADI và tam giác AHI, có:
\(A_1=A_2\)(AB là p/g của góc DAH)
AI là cạnh chung
góc DIA= góc HIA=90 độ
=> tam giác ADI = tam giác AHI(cgv-gnk)(4)
Chứng minh tương tự, ta được : tam giác AEK= tam giác AHK(cgv-gnk)(5)
Từ (3), (4) và (5) => tam giác AIH=AKH=AKE=AID
Ta có :
\(S_{AIHK}=AI.AH=s\)
=> \(\frac{S_{AIHK}}{2}=S_{AIH}=\frac{s}{2}\)
=> \(S_{DHE}=S_{AIH}+S_{AKH}+S_{AKE}+S_{AID}=4.S_{AIH}\)
\(=4.\frac{s}{2}=2.s\)
Vậy: diện tích \(S_{DHE}=2.s\)
Mình đã làm hưng câu c) khá dài dòng, mình nghĩ rằng nên chứng minh theo cách khác ngắn gọn hơn, bài giải câu c) là dành cho trường hợp không biết làm sao chứng minh tam giác theo cách dài dòng nên bạn nào có cách giải câu c) hay hơn không? mình nghĩ là có các bạn cùng thảo luận nha!
Chúc bạn học thật giỏi nha!!!!!!!!
Chia hình chữ nhật 4 x 3 thành 24 hình chữ nhật \(\frac{1}{2}\times1\).
Diện tích mỗi hình chữ nhật \(\frac{1}{2}\times1\) là \(\frac{1}{2}\left(cm^2\right)\)
G/s : Mỗi hình chữ nhật chỉ chứa ít hơn 3 điểm
Tổng số điểm của hình chữ nhật 3 x 4 thì sẽ < 2.24 = 48 điểm <49 điểm ( vô lí)
=> Theo nguyên lí Dirichlet sẽ tồn tại một hình chữ nhật \(\frac{1}{2}\times1\) chứa ít nhất 3 điểm trong 49 điểm đã cho.
Tam giác có 3 đỉnh nằm trong hình chữ nhật \(\frac{1}{2}\times1\) nên diện tích < \(\frac{1}{2}\left(cm^2\right)\)
Vậy ....
chịu thua