K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021

a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
AH=AK(gt)
Do đó: ΔAHD=ΔAKD(cạnh huyền-cạnh góc vuông)

13 tháng 5 2021

b) Vì △AHD=△AKD nên DH=DK
Mà AH=AK
Kết hợp 2 điều này lại suy ra AD là trung trực của HK
Ta có đpcm

a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AH=AK

AD chung

=>ΔAHD=ΔAKD

b: AK=AH

DH=DK

=>AD là trung trực của HK

a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có 

AD chung

AH=AK(gt)

Do đó: ΔAHD=ΔAKD(Cạnh huyền-cạnh góc vuông)

23 tháng 5 2021

a) Xét tam giác AHDAHD và AKDAKD có:

ˆAHD=ˆAKD=900AHD^=AKD^=900

ADAD chung

AH=AKAH=AK (gt)

⇒△AHD=△AKD⇒△AHD=△AKD (ch-cgv)

b) 

Vì △AHD=△AKD△AHD=△AKD nên DH=DKDH=DK

Mà AH=AKAH=AK

Kết hợp 2 điều này lại suy ra ADAD là trung trực của HK

AH
Akai Haruma
Giáo viên
28 tháng 3 2021

Lời giải:

a) Xét tam giác $AHD$ và $AKD$ có:

$\widehat{AHD}=\widehat{AKD}=90^0$

$AD$ chung

$AH=AK$ (gt)

$\Rightarrow \triangle AHD=\triangle AKD$ (ch-cgv)

b) 

Vì $\triangle AHD=\triangle AKD$ nên $DH=DK$

Mà $AH=AK$

Kết hợp 2 điều này lại suy ra $AD$ là trung trực của $HK$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 3 2021

Hình vẽ:

undefined

10 tháng 5 2020

GiẢI:

VẼ DG vuông góc vối AH (G thuộc AH). Suy ra: DG//BC.

Ta có:

Góc BAH = góc BCA  ( cùng phụ góc B)

Mà góc BCA = góc GDA (góc trong cùng phía)

Do đó: góc BAH = góc GDA

Xét hai tam giác ABH và DAG, ta có:

ü góc BAH = góc GDA  (chứng minh trên)

ü AB=AD ( giả thuyết)

ü ABH vuông tại H, và AHG vuông tại G.

Nếu học tới các trường hợp bằng nhau của tam giác vuông thì ghi là:

Tam giác ABH = tam giác DAG  (cạnh huyền góc nhon)

Nếu chưa học tới thì ghi:

Tam giác ABH = tam giác DAG  (góc cạnh góc)

Suy ra: AH=DG

Lại có: DG=HE (vì EDGH là hình chủ nhật)

Vậy AH=HE

a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

AH=AK(gt)

Do đó: ΔAHD=ΔAKD(cạnh huyền-cạnh góc vuông)

26 tháng 11 2023

1:

a: Xét ΔBAI và ΔBKI có

BA=BK

\(\widehat{ABI}=\widehat{KBI}\)

BI chung

Do đó: ΔBAI=ΔBKI

=>IA=IK

b: ΔBAI=ΔBKI

=>\(\widehat{BAI}=\widehat{BKI}=90^0\)

=>IK\(\perp\)BC

mà AH\(\perp\)BC

nên AH//KI

c: BA=BK

=>B nằm trên đường trung trực của AK(1)

IA=IK

=>I nằm trên đường trung trực của AK(2)

Từ (1) và (2) suy ra BI là đường trung trực của AK

d: BA=BK

=>ΔBAK cân tại B

=>\(\widehat{BAK}=\widehat{BKA}\)

\(\widehat{BAK}+\widehat{CAK}=\widehat{BAC}=90^0\)

\(\widehat{BKA}+\widehat{HAK}=90^0\)(ΔKAH vuông tại H)

mà \(\widehat{BAK}=\widehat{BKA}\)

nên \(\widehat{CAK}=\widehat{HAK}\)

=>AK là phân giác của góc HAC

2:

a: Ta có: \(\widehat{ANI}=\widehat{BNH}\)(hai góc đối đỉnh)

\(\widehat{BNH}+\widehat{HBN}=90^0\)(ΔHNB vuông tại H)

Do đó: \(\widehat{ANI}+\widehat{HBN}=90^0\)

mà \(\widehat{HBN}=\widehat{ABI}\)

nên \(\widehat{ANI}+\widehat{ABI}=90^0\)

mà \(\widehat{ABI}+\widehat{AIN}=90^0\)(ΔABI vuông tại A)

nên \(\widehat{ANI}=\widehat{AIN}\)

b: Xét ΔBAN và ΔBKN có

BA=BK

\(\widehat{ABN}=\widehat{KBN}\)

BN chung

Do đó; ΔBAN=ΔBKN

=>NA=NK

c: BI là trung trực của AK

=>BI\(\perp\)AK

Xét ΔBAK có

BI,AH là đường cao

BI cắt AH tại N

Do đó: N là trực tâm của ΔBAK

=>KN\(\perp\)AB

3:

Xét ΔCAE có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAE cân tại C

=>CA=CE

ΔCAE cân tại C

mà CB là đường cao

nên CB là phân giác của \(\widehat{ACE}\)