K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:

Ta có: $\widehat{BAE}=\widehat{BAC}-\widehat{EAC}$

$=90^0-\frac{1}{2}\widehat{HAC}(1)$

$\widehat{AEB}=\widehat{EAC}+\widehat{ECA}$
$=\frac{1}{2}\widehat{HAC}+(90^0-\widehat{HAC})$

$=90^0-\frac{1}{2}\widehat{HAC}(2)$

Từ $(1); (2)\Rightarrow \widehat{BAE}=\widehat{AEB}$

$\Rightarrow \triangle ABE$ cân tại $B$

AH
Akai Haruma
Giáo viên
6 tháng 1

Hình vẽ:

21 tháng 3 2020

A B C H E D K

Kẻ D

21 tháng 3 2020

nhầm ấn lộn xíu !

a: \(\widehat{BEA}+\widehat{EAH}=90^0\)

\(\widehat{BAE}+\widehat{CAE}=90^0\)

mà \(\widehat{HAE}=\widehat{CAE}\)

nên \(\widehat{BEA}=\widehat{BAE}\)

hay ΔABE cân tại B

\(\widehat{CAD}+\widehat{BAD}=90^0\)

\(\widehat{CDA}+\widehat{HAD}=90^0\)

mà \(\widehat{BAD}=\widehat{HAD}\)

nên \(\widehat{CAD}=\widehat{CDA}\)

hay ΔDCA cân tại C

b: Đề bài yêu cầu gì?

22 tháng 1 2017

A B C H E D

Có thể thấy rằng DC + DE = EC < BC mà BC < AB + AC (bất đẳng thức tam giác) nên AB + AC > DC + DE.

Đề sai rồi bạn.

22 tháng 1 2017

mả thằng cha mi t

17 tháng 11 2018

17 tháng 2 2019

chị tự kẻ hình : 

AH _|_ BC (gt) => góc DHA = 90o (đn)

=> góc ADH + góc DHA + góc DAH = 180 (đl)

=> góc ADH + 90 + góc DAH  = 180

=> góc ADH = 180 - 90 - góc DAH 

=> góc ADH = 90 - góc DAH                  (1)

có tam giác ABC vuông tại A (gt) 

=> góc DAB + góc CAD = 90 

=> góc DAB = 90 - góc CAD              (2)

AD là phân giác của góc HAC (gt) => góc CAD = góc DAH (đn)            (3)

(1)(2)(3) => góc DAB = góc ADB 

=> tam giác ABD cân tại B (dh)

24 tháng 5 2021

                                                                                      Giải

a, Vì ED \(\perp\)BC ( gt ) \(\Rightarrow\)\(\Delta\)DBE là tam giác vuông tại D

Xét \(\Delta\) vuông ABE và \(\Delta\)vuông DBE, có :

BE : cạnh chung 

góc ABE = góc DBE ( BE là tpg góc ABC ) 

\(\Rightarrow\)\(\Delta\)vuông ABE = \(\Delta\) vuông DBE ( cạnh huyền góc nhọn )

b, Vì \(\Delta\) ABE = \(\Delta\)DBE ( cmt )

\(\Rightarrow\)BA = BD ( 2 cạnh tương ứng ) \(\Rightarrow\)B nằm trên đtt của AD ( đ/l đảo )

          AE = DE ( 2 cạnh tương ứng )\(\Rightarrow\) E nằm trên đtt của AD ( đ/l đảo )

Từ 2 điều trên \(\Rightarrow\) BE là đtt của đoạn thẳng AD 

c, +, ta có : \(\Delta\)BAD cân tại B ( BA = BD )

\(\Rightarrow\)góc BAD = góc BDA ( t/c )

Vì AH \(\perp\) BC tại H ( gt ) \(\Rightarrow\) \(\Delta\) HAD vuông tại H 

Xét \(\Delta\)vuông HAD, có :

góc HAD + góc HDA ( hay góc BDA ) = 90o ( 2 góc phụ nhau )

Xét \(\Delta\) vuông ABC, có :

góc CAD + góc BAD = 90o ( 2 góc phụ nhau )

Mà góc BDA = góc BAD ( cmt )

Từ các điều trên \(\Rightarrow\)góc HAD = góc CAD    (1)

Mà tia AD nằm giữa 2 tia AH, AC ( cách vẽ )    (2)

Từ (1) và (2) \(\Rightarrow\) AD là tpg của góc HAC ( đpcm )

6 tháng 1 2016

Ta có Góc BDA + Góc HAD = 90 độ ( 1 )
Lại có Góc BAD + Góc DAC = 90 độ ( 2 )
Mà AD là tia phân giác của góc HAC 
->Góc HAD = Góc DAC ( 3 )
Từ ( 1 ) ( 2 ) ( 3 )
->Góc BAD = Góc BDA
Xét tam giác ABD có 
Góc BAD = Góc BDA
-> Tam giác ABD là tâm giác cân tại B