Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(DP\perp AB,DQ\perp AC\left(P\in AB,Q\in AC\right)\)
Dễ chứng minh APDQ là hình vuông nên AP = PD = DQ = QA và \(\widehat{PDQ}=90^0\)
Xét \(\Delta DPB\)và \(\Delta DQM\)có:
\(\widehat{DPB}=\widehat{DQM}\)(= 900)
DP = DQ (cmt)
\(\widehat{BDP}=\widehat{MDQ}\)(cùng phụ với góc PDM)
Do đó \(\Delta DPB\)\(=\Delta DQM\left(cgv-gnk\right)\)
Suy ra DB = DM ( hai cạnh tương ứng)
Kết hợp với \(\widehat{BDM}=90^0\)suy ra tam giác BDM vuông cân tại D
Vậy \(\widehat{MBD}=45^0\)
Bài này làm như thế nào ? Người ta phải ốp 4 bức tường của mott bể nước ,mỗi bức tường cần 10 viên gạch hình vuông có cạnh 9 cm. Hỏi cả 4 bức tường có diện tích bao nhiêu xăng - ti - mét vuông ?
xét tứ giác ABDM
có ^A=90 o ( tam giác ABC vuông tại A theo gt )
^D = 90 o ( gt )
=> ^A + ^D = 180 o
=> t/g ABDM là t/g nội tiếp ( dhnb )
=> góc BAD = góc BMD ( góo nội tiếp cùng chắn cung BD )
lại có ^ BAD = 1/2 ^ BAC = 1/2 90 o = 45 o
=> ^BMD = 45 o
Vẽ DH⊥AB, DK⊥AC
Xét ΔAHD và ΔAKD có:
AHD=DKA=90 độ
AD chung
HAD=KAD (do AD là phân giác)
=>ΔAHD=ΔKAD (ch-gn) (1)
=>HD=AD (2 cạnh tương ứng)
Ta có: AD là phân giác góc BAC (gt)
=>BAD=902902=45 độ
hay HAD=45 độ
Lại có: ΔAHD vuông tại H
=>HDA=90-HAD=90-45=45 độ
=>HAD=HDA (=45 độ)
=>ΔAHD vuông cân tại H (2)
Từ (1) và (2) =>ΔAKD vuông cân tại K
=>KAD=KDA (2 góc ở đáy bằng nhau)
Lại có: HAD=HDA (cmt)
Mà: KAD+HAD=90 độ (gt)
=>KDA+HDA=90 độ
hay HDK=90 độ
Ta có: BDM=HDK=90 độ
=>BDH+HDM=HDM+MDK
=>BDH=MDK
Xét ΔBHD và ΔMKD có:
BHD=MKD=90 độ
HD=KD (cmt)
BDH=MDK (mt)
=>ΔBHD=ΔMKD (ch-gn)
=>BD=MD (2 cạnh tương ứng)
=>ΔBDM cân tại D
Lại có: BDM =90 độ (gt)
=>ΔBDM vuông cân tại D
=>\(\widehat{MBD}=\frac{180^0-90^0}{2}=45^0\)
Vậy: \(\widehat{MBD}=45^0\)