Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: vuông tại A
a: Xét ΔADB vuông tại A và ΔEDB vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔADB=ΔEDB
b: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADK=góc EDC
=>ΔDAK=ΔDEC
=>AK=EC
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay DE\(\perp\)BC(Đpcm)
b) Ta có: ΔBAD=ΔBED(cmt)
nên AD=ED(hai cạnh tương ứng)
Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADK=ΔEDC(cạnh góc vuông-góc nhọn kề)
Suy ra: AK=EC(hai cạnh tương ứng)
c) Ta có: BA+AK=BK(A nằm giữa B và K)
BE+EC=BC(E nằm giữa B và C)
mà BA=BE(cmt)
và AK=EC(cmt)
nên BK=BC
Ta có: ΔADK=ΔEDC(cmt)
nên DK=DC(hai cạnh tương ứng)
Ta có: M là trung điểm của CK(cmt)
nên MK=MC
Ta có: BK=BC(cmt)
nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DK=DC(cmt)
nên D nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)
Ta có: CM=KM(cmt)
nên M nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(3)
Từ (1), (2) và (3) suy ra B,D,M thẳng hàng(đpcm)
Tg ABD =tg EBD ( cm trên) •> AD=DE( 2 cạnh tương ứng) (1)
Tg ADF vg tại A=> Góc A lớn nhất=> FD lớn nhất( Qh giữa góc và cạnh đối diện trong 1 tam giác)=> AD<FD(2)
Từ 1 và 2 => ED<FD
a) Tam giác ABC vuông tại A => AB2+AC2=BC2 ( theo định lý Pitago)
=> 62+Ac2=102 =>AC2=100-36=64=> AC= 8
Vì D nằm trên AC=> AD+DC= AC=> 3+DC=8=> DC=5(cm)
a/ Xét tam giác ACD và ECD có:
ˆA=ˆD=90(gt)
ˆC1=ˆC2(gt)
CD chung
⇒ΔACD=ΔECD(c-g-c)
Tham khảo:
a) xét Δ vuông ADB và Δ vuông EDB có:
BD chung, ∠ABD = ∠EBD (gt) => ΔADB = ΔEDB (ch - gn)
b) ΔADB = ΔEDB => AD = ED
xét ΔADK và ΔEDC có:
AD = ED (cmt), ∠ADK = ∠EDC (đối đỉnh), ∠DAK = ∠DEC (= 90°) => ΔADK = ΔEDC (g - c - g)
=> AK = EC
c) ΔADK = ΔEDC => DK = DC => ΔDKC cân tại D
D là giao điểm của KE và CA là 2 đg cao của ΔBKC => BF cũng là đường cao của ΔBKC
=> BF ⊥ KC <=> DF ⊥ KC
mà ΔDKC cân tại D => DF cũng là đg trung tuyến
DG = 2GF => G là giao điểm của 3 đg trung tuyến của ΔDKC
=> KG đi qua trung điểm của CD => K, G, M thẳng hàng (do M là trung điểm của CD