K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: ΔABD vuông tại A(gt)

nên A nằm trên đường tròn đường kính BD(Định lí quỹ tích cung chứa góc)

mà BD là đường kính của (O)

nên A\(\in\)(O)(Đpcm)

b) Xét (O) có 

\(\widehat{AKB}\) là góc nội tiếp chắn cung AB

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{AKB}=\widehat{ADB}\)(Hệ quả góc nội tiếp)

9 tháng 5 2021

a, Xét đường tròn (O) có: \(\Delta\)BKD nội tiếp; BD là đường kính

\(\Rightarrow\) \(\Delta\)BKD vuông tại K (sự xác định đường tròn)

\(\Rightarrow\) BK \(\perp\) KD

Mà C \(\in\) BK \(\Rightarrow\) CK \(\perp\) KD

Xét \(\Delta\)CKD và \(\Delta\)CAB có:

\(\widehat{CKD}=\widehat{CAB}=90^o\)

\(\widehat{C}\) chung

\(\Rightarrow\) \(\Delta\)CKD ~ \(\Delta\)CAB (gg)

\(\Rightarrow\) \(\dfrac{CK}{CA}=\dfrac{CD}{CB}\) (tỉ số đồng dạng)

\(\Rightarrow\) CK.CB = CD.CA (đpcm)

b, Xét tam giác ABD có: AB = AD (gt)

\(\Rightarrow\) \(\Delta\)ABD cân tại A (dhnb)

Mà AO là trung tuyến ứng với BD của \(\Delta\)ABD (O là tâm của đường tròn đk BD)

\(\Rightarrow\) AO là đường cao ứng với BD (tính chất tam giác cân)

\(\Rightarrow\) \(\widehat{AOB}\) = 90o

Xét tứ giác BHOA có: \(\widehat{BHA}=\widehat{BOA}=90^o\) (AH là đường cao; cmt)

Hai góc có đỉnh kề nhau cùng nhìn cạnh AB dưới 1 góc vuông ko đổi

\(\Rightarrow\) BHOA là tứ giác nội tiếp (dhnb tứ giác nội tiếp)

\(\Rightarrow\) \(\widehat{AHO}=\widehat{ABO}\) (2 góc nội tiếp cùng chắn \(\stackrel\frown{AO}\)) (1)

Xét tam giác ABD cân tại A có: \(\widehat{BAD}=90^o\) (tam giác ABD vuông tại A)

\(\Rightarrow\) Tam giác ABD vuông cân tại A 

\(\Rightarrow\) \(\widehat{ABD}\) = 45o (t/c tam giác vuông cân) (2)

Từ (1) và (2) \(\Rightarrow\) \(\widehat{AHO}=45^o\)

Chúc bn học tốt!

1 tháng 5 2020

Phông chữ bạn ơi

1 tháng 5 2020

cái moéo j đây

2 tháng 1 2018

J A B C O E D H K M N

a) Xét hai tam giác ABD và ACE có:

\(\widehat{A}\) chung

\(\widehat{ADB}=\widehat{AEC}=90^o\)

\(\Rightarrow\Delta ABD\sim\Delta ACE\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\Rightarrow AD.AC=AE.AB\)

b) Xét tam giác ABC có BD và CE là hai đường cao nên H là trực tâm. Vậy thì AH vuông góc với BC tại K.

c) Ta thấy AMO; AKO; ANO là các tam giác vuông có chung cạnh huyền AO nên A, M, K, O, N cùng thuộc đường tròn đường kính AO.

Khi đó \(\widehat{AKN}=\widehat{AMN}\)  (Hai góc nội tiếp cùng chắn cung AN)

Lại có AM = AN nên \(\widehat{AMN}=\widehat{ANM}\)

Suy ra \(\widehat{AKN}=\widehat{ANM}\)

d) Gọi J là giao điểm của MN với AO.

Xét tam giác vuông ANO, đường cao NJ, ta có:

\(AJ.AO=AN^2\)  (Hệ thức lượng)

Lại có \(\Delta AHJ\sim\Delta AOK\left(g-g\right)\Rightarrow\frac{AH}{AO}=\frac{AJ}{AK}\)

\(\Rightarrow AJ.AO=AH.AK\)

\(\Rightarrow AN^2=AH.AK\)

\(\Rightarrow\Delta AHN\sim\Delta ANK\left(c-g-c\right)\Rightarrow\widehat{ANH}=\widehat{AKN}\)

Mà \(\widehat{AKN}=\widehat{ANM}\Rightarrow\widehat{ANH}=\widehat{ANM}\) hay M, N, H thẳng hàng.

3 tháng 12 2019

Hoàng Thị Thu Huyền ơi ngộ nhận kìa. ý d đang chứng minh thẳng hàng mà bạn có 2 cái tam giác AHJ và AOK đồng dạng  (g g) thì sao được ??

28 tháng 1 2019

A B C D E I S O

1) Xét đường tròn (O) đường kính CD => ^CED = 900 => ^DEB = 900

Xét tứ giác ADEB có: ^BAD + ^ DEB = 900 + 900 = 1800 => Tứ giác ADEB nội tiếp 

Hay 4 điểm A,D,E,B cùng thuộc một đường tròn (đpcm).

2) Tứ giác ADEB nội tiếp => ^DEA = ^DBA. Tương tự: ^DEI = ^DCI

Ta có: Tứ giác ABCI nội tiếp của đường tròn đường kính BC (Do ^BAC = ^BIC = 900)

=> ^DBA = ^DCI. Từ đó, suy ra: ^DEA = ^DEI => ED là phân giác ^AEI (đpcm).

3) Dễ thấy DE, CI, BA là 3 đường cao của \(\Delta\)BCD nên AB,CI,DE đồng quy (tại trực tâm \(\Delta\)BCD) (đpcm).

4) Xét \(\Delta\)ABC có vuông tại A: \(\tan\widehat{ABC}=\frac{AC}{AB}=\sqrt{2}\Rightarrow AB=\frac{AC}{\sqrt{2}}\)(theo gt)

Để EA là tiếp tuyến của (CD) thì ^AED = ^DCE. Hay ^ABD = ^ACB (Vì ^AED=^ABD)

<=> \(\Delta\)ADB ~ \(\Delta\)ABC (g,g) <=> \(AB^2=AD.AC\) <=> \(\left(\frac{AC}{\sqrt{2}}\right)^2=AD.AC\)

<=> \(AD=\frac{AC}{2}\)<=> D là trung điểm cạnh AC.

Vậy D là trung điểm AC thì EA là tiếp tuyến của (CD).