K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔBAD có

BC vừa là đường cao, vừa là trung tuyến

=>ΔBAD cân tại B

=>BA=BD

2: Xét ΔABF co

BE vừa là đường cao, vừa là trung tuyến

=>ΔBAF cân tại B

=>góc ABF=2*góc BAD

góc ABF+góc ABD

=2*góc BAD+2*góc BAF

=2*90=180 độ

=>D,B,F thẳng hàng

9 tháng 5 2023

cho mik hỏi tại sao ABF=2BAD; ABD=2BAF vậy? Có phải là t/c góc ngoài tam giác k ạ?

8 tháng 5 2021

1) Vì E là giao điểm của OD và AC; AD,DC là tiếp tuyến của (O)

\(\Rightarrow OD\perp AC\)tại E

\(\Rightarrow\widehat{CEO}=90^0\)

Lại có: CH vuông góc với AB \(\Rightarrow\widehat{CHO}=90^0\)

Xét tứ giác OECH có: \(\widehat{CEO}+\widehat{CHO}=180^0\)

Mà 2 góc này ở vị trí đối nhau trong tứ giác OECH

\(\Rightarrow OECH\)nội tiếp (dhnb )

2) \(2\widehat{BCF}+\widehat{BFC}=sđ\widebat{BC}+\frac{1}{2}\left(sđ\widebat{AC}-sđ\widebat{BC}\right)\)

\(=\frac{1}{2}\left(sđ\widebat{AC}+sđ\widebat{BC}\right)\)

\(=90^0\left(đpcm\right)\)

3)  Kẻ tiếp tuyến By của (O). By cắt DC tại P. Gọi K là giao điểm của BC và OP.

Ta có: AC // OP ( cùng vuông góc với BC )

Xét tam giác DOP có : EC // OP

\(\Rightarrow\frac{DE}{DO}=\frac{DC}{DP}\)(1)

Lại có: CH // BP ( cùng vuông góc với AB )

Xét tam giác DBP có: CM // BP

\(\Rightarrow\frac{DM}{DB}=\frac{DC}{DP}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{DE}{DO}=\frac{DM}{DB}\)

Xét tam giác DOB có \(\frac{DE}{DO}=\frac{DM}{DB}\left(cmt\right)\); E thuộc OD , M thuộc DB

\(\Rightarrow EM//OB\)ta let đảo

Hay EM // AB ( đpcm) 

9 tháng 8 2015

Tóm tắt thôi nhé

a) Các cạnh // => Hình bình hành

T/g OBE = t/g OCD (^B=^C=90*, OB=OC, ^BOE=^COD vì cùng phụ với EOD) => OE = OD (2 cạnh kề) => Hình thoi

b) Nối OO' => 2 tam giác cân cùng góc đáy => so le trong => //

c) 1] OO' là đường trung trực của AB => đường trung bình

2] CB//OO'

Cm tương tự 1] để được BD//OO' => Ơ-clit => thẳng hàng

17 tháng 12 2019

câu c ghi có đúng ko vậy bạn

17 tháng 12 2019

đúng rồi bạn

15 tháng 10 2023

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=180^0\)

=>OBAC là tứ giác nội tiếp

b: Xét (O) có

DB,DM là tiếp tuyến

=>DB=DM và OD là phân giác của \(\widehat{BOM}\left(1\right)\)

Xét (O) có

EM,EC là tiếp tuyến

=>EM=EC và OE là phân giác của \(\widehat{MOC}\left(2\right)\)

\(C_{ADE}=AD+DE+AE\)

\(=AB-BD+DM+ME+AC-CE\)

\(=AB+AC=2AB\)

c: \(\widehat{DOE}=\widehat{DOM}+\widehat{EOM}\)

\(=\dfrac{1}{2}\left(\widehat{BOM}+\widehat{COM}\right)=\dfrac{1}{2}\cdot\widehat{BOC}\)

15 tháng 10 2023

Nhưng ko có hình à

 

 

 

1: 

a: M là điểm chính giữa của cung AB

=>OM vuông góc AB

góc APB=1/2*sđ cung AB=90 độ

góc COB+góc CPB=180 độ

=>COBP nội tiếp

Xet ΔAOC vuông tại O và ΔAPB vuông tại P có

góc CAO chung

=>ΔAOC đồng dạng với ΔAPB

=>AO/AP=AC/AB

=>AP*AC=AO*AB=2R^2 ko đổi

b: Xét ΔBOD vuông tại O và ΔCOA vuông tại O có

góc BDO=góc CAO

=>ΔBOD đồng dạng với ΔCOA

c: góc OPI=90 độ

=>góc IPC+góc OPC=90 độ

=>góc IPC+góc PAB=90 độ

=>góc IPC=góc ACO=góc ICP

=>IC=IP và góc IDP=góc IPD

=>IC=IP=ID

=>IC=ID