K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2021

a)

Xét tam giác AMB và tam giác DMC, ta có : 

góc AMB = góc CMD

MA = MD

BM = MC

Suy ra tam giác AMB = tam giác DMC (c.g.c)

Suy ra: góc MAB = góc MDC 

Mà hai góc ở vị trí so le trong

Do đó CD // AB

b)

Vì CD // AB mà AB ⊥ AC nên CD ⊥ AC

Xét hai tam giác vuông ABI và tam giác CDI

có AI = IC (I là trung điểm AC)

có AB = CD(hai cạnh tương ứng bằng nhau)

Vậy tam giác ABI = tam giác CDI

 

 

5 tháng 7 2021

Không có ý c hả bạn ? 

a: Xét ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔMAB=ΔMDC

=>góc MAB=góc MDC

=>AB//DC

b: Xét ΔKMB và ΔFMC có

góc MBK=góc MCK

MB=MC

góc KMB=góc FMC

=>ΔKMB=ΔFMC

=>MK=MF

=>M là trung điểm của KF

28 tháng 5 2020

a. Xét tam giác ABM và tam giác DCM có:

+, BM = MC ( AM là đường trung tuyến của tam giác ABC )

+, Góc AMB = góc DMC ( 2 góc đối đỉnh )

+, AM = MD ( gt )

=> tam giác ABM = tam giác DCM ( c.g.c )

=> AB = CD ( 2 cạnh tương ứng ) 

=> góc BAM = góc CDM ( 2 góc tương ứng ) 

Mà 2 góc này ở vị trí so le trong

=> AB // CD ( đpcm )

30 tháng 6 2021

có hình ko vậy ạ

 

16 tháng 6 2019

Cho tam giác ABC vuông tại A, có AB = 3 cm, AC = 4 cm. Gọi AM là đường trung tuyến (M BC), trên tia đối của tia MA lấy điểm D sao cho AM = MD.

a) Tính độ dài BC. 

b) Chứng minh AB = CD, AB // CD.

c) Chứng minh góc BAM > góc CAM.

d)gọi H là trung điểm của BM trên đường thẳng AH lấy E sao cho AH=HE,CE cắt AD tại F.Chứng minh F là trung điểm của CE

1 tháng 5 2016

NhOk ChỈ Là 1 FaN CuỒnG CủA KhẢi thích chép lại đề lắm à 

a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

b: XétΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

góc BAC=90 độ

=>ABDC là hình chữ nhật

=>ΔACD vuông tại C

b: Xet ΔKCD vuông tại C và ΔKAB vuông tại A có

KC=KA

CD=AB

=>ΔKCD=ΔKAB

=>KD=KB

 

13 tháng 12 2020

a)

Sửa đề: Chứng minh ΔABM=ΔACM

Xét ΔABM và ΔACM có 

AB=AC(gt)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có 

MB=MC(M là trung điểm của BC)

AM=DM(gt)

Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)

\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)