Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BMDH có
gócc BMD+góc BHD=180 độ
=>BMDH là tứ giác nội tiếp
b: góc AMN+góc OAM
=góc ADN+(180 độ-góc AOB)/2
=90 độ-góc HAC+90 độ-góc AOB/2
=180 độ-(90 độ-góc ACB)-góc ACB
=90 độ
=>MN vuông góc AO
=>MN//tiếp tuyến tại A của (O)
- Xét △AMD và △AHB có: \(\widehat{AMD}=\widehat{AHB}\left(=90^0\right)\), \(\widehat{BAH}\) là góc chung.
\(\Rightarrow\Delta AMD\sim\Delta AHB\left(g-g\right)\)
\(\Rightarrow\dfrac{AM}{AH}=\dfrac{AD}{AB}\Rightarrow AM.AB=AD.AH\left(1\right)\)
- Xét △AND và △AHC có: \(\widehat{AND}=\widehat{AHC}=90^0\), \(\widehat{CAH}\) là góc chung.
\(\Rightarrow\Delta AND\sim\Delta AHC\left(g-g\right)\)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AN}{AH}\Rightarrow AD.AH=AN.AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AM.AB=AN.AC\Rightarrow\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét △AMN và △ACB có: \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)(cmt), \(\widehat{BAC}\) là góc chung.
\(\Rightarrow\Delta AMN\sim\Delta ACB\left(c-g-c\right)\)
\(\Rightarrow\widehat{AMN}=\widehat{ACB}\)
Ta có \(OA=OB\) nên △OAB cân tại O.
\(\Rightarrow\widehat{OAB}=\dfrac{180^0-\widehat{AOB}}{2}\)
Xét (O): \(\widehat{AOB}=2\widehat{ACB}\left(=sđ\stackrel\frown{AB}\right)\)
\(\Rightarrow\widehat{OAB}=\dfrac{180^0-2\widehat{ACB}}{2}=90^0-\widehat{ACB}\)
\(\Rightarrow\widehat{OAB}+\widehat{AMN}=90^0\) nên MN vuông góc với OA.
=>MN song song với tiếp tuyến tại A của (O) (vì OA là bán kính của (O) ).
1. Vì \(\widehat{ADB}=\widehat{AEB}=90^0\) nên tứ giác AEBD nội tiếp đường tròn đường kính AB.
2. Tứ giác AEBD, AFCD nội tiếp và BE, CF tiếp xúc (O), suy ra:
\(\widehat{AED}=\widehat{ABC}=\widehat{ACF}=\widehat{ADF};\widehat{AFD}=\widehat{ADE}\)
Do đó \(\Delta\)EAD ~ \(\Delta\)DAF, suy ra \(AD^2=AE.AF\)
3. Ta có \(AE.AF=\left(AM+AN\right)^2=\frac{\left(AE+AF\right)^2}{4}\Leftrightarrow\left(AE-AF\right)^2=0\Leftrightarrow AE=AF\)
Từ đó \(\Delta\)AEG = \(\Delta\)AFG (Cạnh huyền.Cạnh góc vuông), suy ra GA là phân giác góc BGC
Mà \(\Delta\)GBC cân tại G nên GA là trung trực BC hay \(\Delta\)ABC cân tại A
Vậy đường cao AD trùng với AO hay A,O,D thẳng hàng.
a) Xét hai tam giác ABD và ACE có:
\(\widehat{A}\) chung
\(\widehat{ADB}=\widehat{AEC}=90^o\)
\(\Rightarrow\Delta ABD\sim\Delta ACE\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\Rightarrow AD.AC=AE.AB\)
b) Xét tam giác ABC có BD và CE là hai đường cao nên H là trực tâm. Vậy thì AH vuông góc với BC tại K.
c) Ta thấy AMO; AKO; ANO là các tam giác vuông có chung cạnh huyền AO nên A, M, K, O, N cùng thuộc đường tròn đường kính AO.
Khi đó \(\widehat{AKN}=\widehat{AMN}\) (Hai góc nội tiếp cùng chắn cung AN)
Lại có AM = AN nên \(\widehat{AMN}=\widehat{ANM}\)
Suy ra \(\widehat{AKN}=\widehat{ANM}\)
d) Gọi J là giao điểm của MN với AO.
Xét tam giác vuông ANO, đường cao NJ, ta có:
\(AJ.AO=AN^2\) (Hệ thức lượng)
Lại có \(\Delta AHJ\sim\Delta AOK\left(g-g\right)\Rightarrow\frac{AH}{AO}=\frac{AJ}{AK}\)
\(\Rightarrow AJ.AO=AH.AK\)
\(\Rightarrow AN^2=AH.AK\)
\(\Rightarrow\Delta AHN\sim\Delta ANK\left(c-g-c\right)\Rightarrow\widehat{ANH}=\widehat{AKN}\)
Mà \(\widehat{AKN}=\widehat{ANM}\Rightarrow\widehat{ANH}=\widehat{ANM}\) hay M, N, H thẳng hàng.
Hoàng Thị Thu Huyền ơi ngộ nhận kìa. ý d đang chứng minh thẳng hàng mà bạn có 2 cái tam giác AHJ và AOK đồng dạng (g g) thì sao được ??
a) Xét tứ giác AHBI có
\(\widehat{AHB}\) và \(\widehat{AIB}\) là hai góc đối
\(\widehat{AHB}+\widehat{AIB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AHBI là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay A,H,B,I cùng nằm trên một đường tròn(đpcm)
b) Xét đường tròn (O; R) có \(\widehat{ABI}=\widehat{ACB}\) (cùng chắc cung AB)
=> \(\widehat{ABI}=\widehat{ACH}\)
Xét ΔABI và ΔACH có: \(\widehat{AIB}=\widehat{AHC}\) (=90o)
\(\widehat{ABI}=\widehat{ACH}\) (cmt)
=> ΔABI ~ ΔACH (g.g) => \(\dfrac{AB}{AC}=\dfrac{AI}{AH}\)=> AI.AC = AH.AB
c) CMTT câu b => ΔABH ~ ΔACK (g.g) => \(\dfrac{AB}{AC}=\dfrac{AH}{AK}\)
=> \(\dfrac{AI}{AH}=\dfrac{AH}{AK}\left(=\dfrac{AB}{AC}\right)\) => AH2 = AI.AK
a )
Xét tứ giác AHBI , ta có :
\(\widehat{I_2}=90^o\left(gt\right)\)
\(\widehat{H_1}=90^o\left(gt\right)\)
\(\widehat{I_2}+\widehat{H_1}=90^o+90^o=180^o\)
Vay : tứ giác AHBI nội tiếp
Xét tứ giác AHCK , ta có :
\(\widehat{K_2}=90^O\left(gt\right)\)
\(\widehat{H_2}=90^o\left(gt\right)\)
\(\widehat{K_2}+\widehat{H_2}=90^o+90^o=180^o\)
Vậy tứ giác AHCK nội tiếp