Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ CK vuông góc với đường thằng FM.
Tứ giác HCKF có 3 góc vuông nên nó là hình chữ nhật.
Xét ∆FMB và ∆KMC:
\(\widehat{BFM}=\widehat{CKM}=90^o\)
\(\widehat{FMB}=\widehat{KMC}\) (2 góc đối đỉnh)
=> ∆FMB~∆KMC (g.g)
=> \(\widehat{FBM}=\widehat{KCM}\)
Xét ∆ECM và ∆KCM:
MC: cạnh chung
\(\widehat{ECM}=\widehat{KCM}\left(=\widehat{FBM}\right)\)
\(\widehat{CEM}=\widehat{CKM}=90^o\)
=> ∆ECM=∆KCM (ch.gn)
=> ME=MK (2 cạnh tương ứng)
Ta có: MF+ME=MF+MK=FK
Mà HCKF là hình chữ nhật(cmt) nên FK=CH
=> MF+ME=CH
Vì ∆ABC không đổi nên CH không đổi, từ đó suy ra tổng MF+ME không đổi khi M di chuyển trên BC.
Tham khảo câu tương tự : Câu hỏi của Nguyen Tra - Toán lớp 8 | Học trực tuyến
Tự vẽ hình nhé bn!
a, \(\Delta BFM\) và \(\Delta CEM\) có:
\(\widehat{BFM}=\widehat{CEM}\) (cùng = 900)
\(\widehat{FBM}=\widehat{ECM}\) (hai góc đáy của tam giác cân)
\(\Rightarrow\Delta BFM\) đồng dạng với \(\Delta CEM\) (gg)
b, \(\Delta BHC\) và \(\Delta CEM\) có:
\(\widehat{BHC}=\widehat{CEM}\) (cùng = 900)
\(\widehat{HBC}=\widehat{ECM}\) (hai góc đáy của tam giác cân)
\(\Rightarrow\Delta BHC\) đồng dạng với \(\Delta CEM\)
c, Kẻ CK vuông góc với đường thẳng FM
Ta có: \(\Delta CEM=\Delta CKM\) (cạnh huyền - góc nhọn)
\(\Rightarrow ME=MK\)
nên \(ME+MF=FK\)
Xét tứ giác HFKC có 3 góc vuông nên là HCN.
Do đó \(FK=CH\) không đổi.
Vậy ME + MF không thay đổi khi M di động trên BC.
Bạn ơi tại sao tam giác CEM = tam giác CKM? Bạn giải rõ được k?
a: Xét ΔBFM vuông tại F và ΔCEM vuông tại E có
góc B=góc C
Do đo:ΔBFM đồng dạng với ΔCEM(1)
b: Xét ΔBFM vuông tại F và ΔBHC vuông tại H có
gpsc B chung
Do đoΔBFM đồng dạng với ΔBHC(2)
Từ (1) và (2) suy ra ΔBHC đồng dạng với ΔCEM
Kẻ CK vuông góc FM
=>CK//AB
Xét ΔECM vuông tại E và ΔKCM vuông tại K có
CM chung
góc ECM=góc KCM
=>ΔECM=ΔKCM
=>ME=MK
=>ME+MF=MK+MF=FK=CH ko đổi