Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\sin\widehat{A}=\frac{h_c}{b}=\frac{h_b}{c}=\frac{h_c-h_b}{b-c}=\frac{h_b-h_c}{\frac{a}{k}}=\frac{k\left(h_b-h_c\right)}{a}\) (1)
Lại có : \(\hept{\begin{cases}\sin\widehat{B}=\frac{h_c}{a}\\\sin\widehat{C}=\frac{h_b}{a}\end{cases}}\)\(\Rightarrow\)\(k\left(\sin\widehat{B}-\sin\widehat{C}\right)=\frac{k\left(h_c-h_b\right)}{a}\) (2)
(1) (2) ...
\(\sin\widehat{B}=\frac{h_a}{c}\)\(;\)\(\sin\widehat{C}=\frac{h_a}{b}\) (1)
\(\hept{\begin{cases}\sin\widehat{B}=\frac{h_c}{a}\\\sin\widehat{C}=\frac{h_b}{a}\end{cases}\Leftrightarrow\hept{\begin{cases}h_c=\sin\widehat{B}.a\\h_b=\sin\widehat{C}.a\end{cases}}}\)\(\Rightarrow\)\(k\left(\frac{1}{h_b}-\frac{1}{h_c}\right)=\frac{k}{a}.\left(\frac{1}{\sin\widehat{C}}-\frac{1}{\sin\widehat{B}}\right)\) (2)
Thay (1) vào (2) ta được \(\frac{k}{a}.\left(\frac{1}{\sin\widehat{C}}-\frac{1}{\sin\widehat{B}}\right)=\frac{k}{a}.\left(\frac{b}{h_a}-\frac{c}{h_a}\right)=\frac{k}{a}.\frac{\frac{a}{k}}{h_a}=\frac{1}{h_a}\)
đpcm
\(\dfrac{a.h_a}{2}=S\Leftrightarrow a=\dfrac{2S}{h_a}\)
Tương tự:
\(b=\dfrac{2S}{h_b};c=\dfrac{2S}{h_c}\)
\(\dfrac{a+b+c}{4S}=\dfrac{\dfrac{2S}{h_a}+\dfrac{2S}{h_b}+\dfrac{2S}{h_c}}{4S}=\dfrac{2S\left(\dfrac{1}{h_a}+\dfrac{1}{h_b}+\dfrac{1}{h_c}\right)}{4S}=\dfrac{\dfrac{1}{h_a}+\dfrac{1}{h_b}+\dfrac{1}{h_c}}{2}\)
Tương đương:
\(\dfrac{1}{h_a+h_b}+\dfrac{1}{h_b+h_c}+\dfrac{1}{h_c+h_a}\le\dfrac{\dfrac{1}{h_a}+\dfrac{1}{h_b}+\dfrac{1}{h_c}}{2}\)
Cauchy-Schwarz:
\(\dfrac{1}{h_a+h_b}\le\dfrac{1}{4}\left(\dfrac{1}{h_a}+\dfrac{1}{h_b}\right)\)
\(\dfrac{1}{h_b+h_c}\le\dfrac{1}{4}\left(\dfrac{1}{h_b}+\dfrac{1}{h_c}\right)\)
\(\dfrac{1}{h_c+h_a}\le\dfrac{1}{4}\left(\dfrac{1}{h_c}+\dfrac{1}{h_a}\right)\)
Cộng theo vế suy ra đpcm
Kí hiệu \(S,p,r\) lần lượt là diện tích, nửa chu vi và bán kính đường tròn nội tiếp của tam giác \(ABC.\) Theo công thức tính diện tích tam giác ta có \(S=pr=\frac{1}{2}ah_a=\frac{1}{2}bh_b=\frac{1}{2}ch_c.\) Từ đó suy ra, bất đẳng thức cần chứng minh tương đương với
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1}{4r^2}.\) Đặt \(x=p-a,y=p-b,z=p-c\) thì \(x,y,z\) là các số dương và ta có
\(a=y+z,b=z+x,c=x+y,r=\sqrt{\frac{xyz}{x+y+z}}.\) Thành thử bất đẳng thức tương đương với
\(\frac{1}{\left(x+y\right)^2}+\frac{1}{\left(y+z\right)^2}+\frac{1}{\left(z+x\right)^2}\le\frac{x+y+z}{4xyz}.\) Để chứng minh điều này ta sử dụng bất đẳng thức đơn giản: \(\left(a+b\right)^2\ge4ab\) với mọi \(a,b\). Khi đó
\(\frac{1}{\left(x+y\right)^2}+\frac{1}{\left(y+z\right)^2}+\frac{1}{\left(z+x\right)^2}\le\frac{1}{4xy}+\frac{1}{4yz}+\frac{1}{4zx}=\frac{x+y+z}{4xyz}.\) (ĐPCM).
a) ta có \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\Rightarrow\frac{a}{\sin A}=\frac{b+c}{\sin B+\sin C}=\frac{2a}{\sin B+\sin C}\)
do đó \(2a\cdot\sin A=a\left(\sin B+\sin C\right)\)
\(\Rightarrow2\sin A=\sin B+\sin C\)
b) ta có \(\frac{2}{h_a}=\frac{2a}{h_a\cdot a}=\frac{2a}{2S_{ABC}}=\frac{a}{S_{ABC}}\left(1\right)\)
\(\frac{1}{h_b}+\frac{1}{h_c}=\frac{b}{h_b\cdot b}+\frac{c}{h_c\cdot c}=\frac{b}{2S_{ABC}}+\frac{c}{2S_{ABC}}=\frac{b+c}{2S_{ABC}}=\frac{2a}{2S_{ABC}}=\frac{a}{S_{ABC}}\left(2\right)\)
từ (1) và (2) \(\Rightarrow\frac{2}{h_a}=\frac{1}{h_b}+\frac{1}{h_c}\)