Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có Do x=1 và x=-1 là nghiệm của đa thức nên
\(\hept{\begin{cases}f\left(1\right)=0\\f\left(-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}a+b-1=0\\a-b-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=-1\end{cases}}}}\)
Vậy a=2 và b=-1
Ta có \(f\left(x\right)\)có nghiệm là -1
=> \(f\left(-1\right)=0\)
=> \(\left(-1\right)^3+\left(-1\right)^3a+\left(-1\right)b-2=0\)
=> \(-1-a-b-2=0\)
=> \(-3-a-b=0\)
=> \(-a-b=3\)
=> \(-\left(a-b\right)=3\)
=> \(a-b=-3\)
=> \(a=-3+b\)(1)
và f (x) cũng có nghiệm là 1
=> \(f\left(1\right)=0\)
=> \(1^3+a.1^3+b-2=0\)
=> \(1+a+b-2=0\)
=> \(-1+a+b=0\)
=> \(a+b=1\)(2)
Thế (1) vào (2), ta có:
\(-3+b+b=1\)
=> \(-3+2b=1\)
=> \(2b=1+3\)
=> \(2b=4\)
=> \(b=2\)
=> \(a=-3+2=-1\)
xét f(x)=0=> (x+1)(x-1)=0
=>__x+1=0=>x=-1
|__x-1=0=> x=1
vậy nghiêm của f(x) là ±1
xét f(x)=0 => (x+1)(x-1)=0
=> __x+1=0=> x=-1
|__x-1=0=> x=1
vậy nghiệm của f(x) là ±1
ta có: nghiệm của f(x) cũng là nghiệm của g(x) nên ±1 cũng là nghiêm của g(x)
g(-1)=\(\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)+2=-1+a-b+2=1+a-b=0\)
g(1)=\(1^3+a.1^2+b.1+2=1+a+b+2=3+a+b=0\)
=>1+a-b=3+a+b
=>1-3-b-b=-a+a
=> -2-2b=0
=> -2b=2
=>b=2:(-2)=-1
thay b vào ta có:
\(g\left(1\right)=3+a+\left(-1\right)=0\)
=> 2+a=0
=> a=-2
Vậy a=-2 và b=-1
F(x)=0
=>x=-2 hoặc x=1
Để F(x) và G(x) có chung tập nghiệm thì:
-2+4a-2b+2=0 và 1+a+b+2=0
=>4a-2b=0 và a+b=-3
=>a=-1 và b=-2
Ta có: f(x)=(x+1).(x-1)=0
=> x+1=0=>x= -1 (chuyển vế đổi dấu)
x-1=0=>x=1
g(x)=x^3+ax^2+bc+2
g(-1)=(-1)^3+a.(-1)^2+b.(-1)+2=0
<=> -1+a+b+2=0
=>a= -1-b
g(1)= 1^3+a.1^2+b.1+2=0
<=>1+a+b+2=0
=>3+a+b=0
=>b=-3
a=0
Vậy a=0 ; b= -3
mik nghĩ
bn có thể tham khảo ở link :
https://olm.vn/hoi-dap/question/902782.html
~~ hok tốt ~
Đặt P(x) = x3 + ax2 + bx - 2
Vì x = -1 và x = 1 là nghiệm của P(x) nên
\(\left\{{}\begin{matrix}P\left(1\right)=a+b-1=0\\P\left(-1\right)=a-b-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=1\\a-b=3\end{matrix}\right.\)
trở về bài toán tìm 2 số biết tổng và hiệu
Mình chỉnh lại đề chút xíu cho dễ nhìn nhé :
Cho đa thức : \(x^3+ax^2+bx-2\)
Xác định a.b biết : P(1) = -1 và P(2) = 1.
Bài làm :
Ta có : P(1) = \(1^3+a.1^2+b.1-2=-1\)
\(\Rightarrow P\left(1\right)=1+a+b-2=-1\)
\(\Rightarrow P\left(1\right)=a+b=-1-1+2=0\)
\(\Rightarrow P\left(1\right)=a=-b\)
P(2) \(=2^3+a.2^2+b.2-2=1\)
\(\Rightarrow P\left(2\right)=8+4a+2b-2=1\)
\(\Rightarrow P\left(2\right)=4a+2b=1-8+2=-5\)
\(\Rightarrow P\left(2\right)=-4b+2b=-5\Rightarrow2b=5\Rightarrow b=\dfrac{5}{2}\)
Lại có : P(1) = \(1^3+a.1^2+\dfrac{5}{2}.1-2=-1\)
\(\Rightarrow P\left(1\right)=1+a+\dfrac{5}{2}-2=-1\)
\(\Rightarrow P\left(1\right)=a+\dfrac{5}{2}=-1-1+2\Rightarrow a=-\dfrac{5}{2}\)
Vậy a = \(-\dfrac{5}{2}\)
b = \(\dfrac{5}{2}\)
Sai thôi nhé .