K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

a,

\(A=4(x-2)(x+1)+(2x-4)^2+(x+1)^2\\=[2(x-2)]^2+2\cdot2(x-2)(x+1)+(x+1)^2\\=[2(x-2)+(x+1)]^2\\=(2x-4+x+1)^2\\=(3x-3)^2\)

Thay $x=\dfrac12$ vào $A$, ta được:

\(A=\Bigg(3\cdot\dfrac12-3\Bigg)^2=\Bigg(\dfrac{-3}{2}\Bigg)^2=\dfrac94\)

Vậy $A=\dfrac94$ khi $x=\dfrac12$.

b,

\(B=x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\\=(x^9-1)-(x^7-x^4)-(x^6-x^3)-(x^5-x^2)\\=[(x^3)^3-1]-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1)-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1-x^4-x^3-x^2)\\=(x^3-1)(x^6-x^4-x^2+1)\)

Thay $x=1$ vào $B$, ta được:

\(B=(1^3-1)(1^6-1^4-1^2+1)=0\)

Vậy $B=0$ khi $x=1$.

$Toru$

3 tháng 3 2019

Alo đề nghị viết đề một cách chính xác 

15 tháng 1 2021

\(B=\dfrac{x^5-5x^3+4x}{30}=\dfrac{x\left(x^4-5x^2+4\right)}{30}=\dfrac{x\left(x^2-1\right)\left(x^2-4\right)}{30}=\dfrac{x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)}{30}=\dfrac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}\).

Xét x nguyên. Trong 5 số x - 2, x - 1, x, x + 1, x + 2 tồn tại 1 số chia hết cho 2, 1 số chia hết cho 3, 1 số chia hết cho 5.

Do đó (x - 2)(x - 1)x(x + 1)(x + 2) luôn nguyên với mọi x nguyên.

Mặt khác tồn tại 2 số trong 5 số x - 2, x - 1, x, x + 1, x + 2 chia hết cho 2 mà 30 chia hết cho 2 nhưng không chia hết cho 4 nên B chia hết cho 2.

Vậy B khác 17 với mọi x nguyên.

15 tháng 1 2021

x đầu ở đa thức A là x^3 chăng?

a/ \(A=x^3-5x^2+8x-4\)

\(=\left(x^3-x^2\right)+\left(-4x^2+4\right)+\left(8x-8\right)\)

\(=x^2\left(x-1\right)-4\left(x-1\right)\left(x+1\right)+8\)

\(=\left(x-1\right)\left(x^2-4x-4\right)=\left(x-1\right)\left(x-2\right)^2\)

b/ \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)

\(=\dfrac{x^5}{30}-\dfrac{5x^3}{30}+\dfrac{4x}{30}\)

\(=\dfrac{x\left(x^4-5x^2+4\right)}{30}\)

\(=\dfrac{x\left(x^4-x^2-4x^2+4\right)}{30}\)

\(=\dfrac{x\left(x+2\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)}{30}\)

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1
AH
Akai Haruma
Giáo viên
28 tháng 2 2021

Bạn tham khảo lời giải tại đây:

CHO ĐA thức f(x)=\(ax^3 bx^2 cx d\). Chứng minh rằng nếu f(X) nhận giá tri nguyên vs mọi giá trị nguyên của x thì d,2b,6... - Hoc24

1 tháng 4 2022

dễ ẹc tự làm đi :v

1 tháng 4 2022

-Không làm đừng spam nhé bạn.

a) ĐKXĐ: \(x\notin\left\{-3;2\right\}\)

b) Ta có: \(P=\dfrac{x^3+2x^2-5x-6}{x^2+x-6}\)

\(=\dfrac{x^3+3x^2-x^2-3x-2x-6}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{x^2\left(x+3\right)-x\left(x+3\right)-2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{\left(x+3\right)\left(x^2-x-2\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{\left(x-2\right)\left(x+1\right)}{x-2}=x+1\)

Với mọi x nguyên thỏa ĐKXĐ, ta luôn có: x+1 là số nguyên

hay P là số nguyên(đpcm)