Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*f(0) nguyên suy ra 0+0+c=c nguyên
*Vì c nguyên và f(1)=a+b+c nguyên suy ra a+b nguyên
*Tương tự vs f(2)=4a+2b+c suy ra 2a nguyên (Vì 4a+2b và 2(a+b) đều nguyên)
Vì 2a và 2(a+b) nguyên suy ra 2b nguyên (đpcm)
Cho `x=0`
`=> f(0) = a.0^2 + b.0 + c`
`=> f(0) = c`
Mà tại `x=0` thì `f(x)` là số nguyên do đó `c` là số nguyên
Cho `x=1`
`=> f(1) = a.1^2 + b.1+c`
`=> f(1)= a+b+c` (1)
Mà tại `x=1` thì `f(x)` là số nguyên do đó a+b+c là số nguyên, mặt khác c là số nguyên nên `a+b` là số nguyên
Cho `x= -1`
`=> f(-1) = a.(-1)^2 + b.(-1)+c`
`=> f(-1) = a -b+c` (2)
Từ `(1)` và `(2)`
`=>f(1) + f(-1) = a+b+c + a-b+c`
`= 2a + 2c` là số nguyên do `f(1)` và `f(-1)` là những số nguyên
Mà `c` là số nguyên nên `2c` là số nguyên
`=> 2a` là số nguyên
Vậy `2a ; a+b ,c` là những số nguyên
tham khảo
Vì P ( x ) = ax2ax2 + bx + c chia hết cho 5 với mọi giá trị nguyên của x nên :
P ( 0 ) ; P ( 1 ) ; P ( - 1 ) tất cả đều chia đều cho 5 .
Ta có :
P ( 0 ) chia hết cho 5
⇒ a . 02+ b . 0 + c chia hết cho 5
⇒ c chia hết cho 5
P ( 1 ) chia hết cho 5
⇒ a . 12 + b . 1 + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Vì c chia hết cho 5 ⇒ a + b chia hết cho 5 ( 1 )
P ( - 1 ) chia hết cho 5
⇒ a . (−1)2(−1)2 + b . ( - 1 ) + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Từ ( 1 ) ; ( 2 ) ⇒ a + b + a - b chia hết cho 5
⇒ 2a chia hết cho 5
Mà ƯCLN ( 2 ; 3 ) = 1 ⇒ a chia hết cho 5
Vì a + b chia hết cho 5 ; a chia hết cho 5 ⇒ b chia hết cho 5
Vậy a , b , c chia hết cho 5 . ( đpcm )
Bạn tham khảo câu trả lời của anh ali tại đây:
Câu hỏi của Dương Thúy Hiền - Toán lớp 8 - Học toán với OnlineMath
Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(f\left(0\right)=a.0^2+b.0+c=c\)
Mà theo đề: \(f\left(0\right)\in Z\Rightarrow c\in Z\)
\(f\left(1\right)=a.1^2+b.1+c=a+b+c\)
Mà theo đề: \(f\left(1\right)\in Z\Rightarrow a+b+c\in Z\)
Lại có: \(c\in Z\Rightarrow a+b\in Z\left(1\right)\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)
Mà theo đề: \(f\left(-1\right)\in Z\Rightarrow a-b+c\in Z\)
Lại có:\(c\in Z\Rightarrow a-b\in Z\left(2\right)\)
Lấy (1)+(2),vế theo vế:
\(\Rightarrow\left(a+b\right)+\left(a-b\right)\in Z\Rightarrow2a\in Z\)
Vậy 2a;a+b;c là những số nguyên (đpcm)