K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

Áp dụng định lí Bezout :

\(P\left(-2\right)=-1\Rightarrow4a-2b+3=-1\Rightarrow4a-2b=-4\)

\(P\left(1\right)=8\Rightarrow a+b+3=8\Rightarrow a+b=5\)

\(\Rightarrow\hept{\begin{cases}4a-2b=-4\\a+b=5\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=4\end{cases}}}\)

NV
25 tháng 11 2019

Áp dụng định lý Bezout:

\(P\left(-2\right)=-1\Rightarrow4a-2b+3=-1\Rightarrow4a-2b=-4\)

\(P\left(1\right)=8\Rightarrow a+b+3=8\Rightarrow a+b=5\)

\(\Rightarrow\left\{{}\begin{matrix}4a-2b=-4\\a+b=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=4\end{matrix}\right.\)

NV
25 tháng 11 2019

Định lý về đa thức của lớp 8

Nếu \(P\left(x\right)\) chia \(x-x_0\) có số dư là \(a\) thì \(P\left(x_0\right)=a\)

Ví dụ ở bài trên \(P\left(x\right)\) chia \(x-\left(-2\right)\)\(-1\) nên \(P\left(-2\right)=-1\)

20 tháng 12 2018

Ta có : \(\left\{{}\begin{matrix}ax^2+bx+3=\left(x+2\right).Q\left(x\right)-1\\ax^2+bx+3=\left(x-1\right).Q\left(x\right)+8\end{matrix}\right.\)

Theo bài ra ta có hệ phương trình :

\(\left\{{}\begin{matrix}4a-2b+3=-1\\a+b+3=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=4\end{matrix}\right.\)

27 tháng 10 2021

p(x)=\(x^3+ã^2+bx+c\)

với x=1 thì p(1)=0 hay

\(1+a+b+c=0\)

p(x) \(chia\)p(x-2) dư 6

với x=2 =>\(4a+2b+c+8=6< =>4a+2b+c=-2\)

tương tự với cái còn lại

xong bạn giải hệ phương trình bậc nhất ba ẩn là xong

18 tháng 3 2017

ta có P(x) = (x-1)(x-2)(x-3) + R(x)                                   (   R(x) = mx^2 + nx + i)
 => P(1) = m . 1 + n.1 + i = -15
=> P(2) = m . 2^2 + n . 2 + i = -15
=> P(3) = m . 3^2 + n . 3 + i = -9

còn lại tự làm nhé

29 tháng 10 2016

2/ Ta phân tích

ax3 + bx2 + c = (x + 2)[a​x2 + (b - 2a)x - 2(b - 2a)] + c + 4(b - 2a) = (x2 - 1)(ax + b) + ax + b + c

Từ đó kết hợp với đề bài ta có hệ

\(\hept{\begin{cases}c+4\left(b-2a\right)=0\\a=1\\b+c=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}\)

29 tháng 10 2016

Ta có A = (x + y)3 + z3 + kxyz - 3xy(x + y)

= (x + y + z)[(x + y)2 - (x + y)z + z2] + xy(kz - 3x - 3y)

Nhìn vào cái này ta dễ thấy là để A chia hết cho x + y + z thì k = - 3