Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thể thay \(a;b;c;d\) vào giải hệ 4 ẩn:
\(\left\{{}\begin{matrix}1+a+b+c+d=7\\16+8a+4b+2c+d=10\\81+27a+9b+3c+d=13\\256+64a+16b+4c+d=16\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=28\end{matrix}\right.\)
// Hoặc 1 cách khác, nhận thấy với một vài giá trị x xác định \(P\left(x+1\right)=P\left(x\right)+3\Rightarrow\) ta tổng quát hóa được \(P\left(x\right)=3\left(x-1\right)+7\) ở một vài giá trị
\(\Rightarrow\) Đặt \(Q\left(x\right)=P\left(x\right)-\left[3\left(x-1\right)+7\right]\) thì ta có \(Q\left(1\right)=Q\left(2\right)=Q\left(3\right)=Q\left(4\right)=0\)
Mà \(Q\left(x\right)\) bậc 4 \(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)
\(\Rightarrow P\left(x\right)=Q\left(x\right)+3\left(x-1\right)+7\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+3\left(x-1\right)+7\)
Khai triển ra ta sẽ được các hệ số a, b, c, d
Bạn lấy lần lượt 3 pt dưới trừ pt đầu, sẽ khử được ẩn d
Sau đó ném vào casio bấm hệ 3 pt 3 ẩn thôi (vì mình ko xài 570VN, hình như 570VN xử được 4 pt 4 ẩn luôn, ko cần khử bớt 1 ẩn)
Xét đa thức Q(x) = P(x) - 10x ,ta có:
Q(1) = P(1) - 10 = 10 - 10 = 0
Q(2) = P(2) - 20 = 20 - 20 = 0
Q(3) = P(3) - 30 = 30 - 30 = 0
=> x = 1 ; x = 2 ; x = 3 là 3 nghiệm của đa thức Q(x), do đó \(Q\left(x\right)⋮\left(x-1\right)\left(x-2\right)\left(x-3\right)\).
=> Q(x) có dạng :
Q(x) = (x - 1)(x - 2)(x - 3)(x - a) \(\left(a\inℚ\right)\)
Khi đó: P(x) = (x - 1)(x - 2)(x - 3)(x - a) + 10x
Ta có: P(12) = 11.10.9.(12 - a) + 120
P(-8) = -9.(-10).(-11)(-8 - a) - 80
=> P(12) + P(-8) = 11.1019.(12 - a + 8 + a) + 40
= 11.10.9.20 + 40 = 19840
Vậy P(12) + P(-8) = 19840
cái này có trong nâng cao chuyên đề thì phải, nâng cao chuyên đề 8 ấy, e mở ra tham khảo nhá, t nhác vt
hình như bài 98 thì phải phần đa thức ý
Nâng cao chuyên đề toán 8 đại nhé
Èo,phân tích ra tưởng cái hệ 3 ẩn r định bỏ cuộc và cái kết:(
Ta có:
\(f\left(x\right)=\left(x-2\right)\cdot Q\left(x\right)+5\)
\(f\left(x\right)=\left(x+1\right)\cdot K\left(x\right)-4\)
Theo định lý Huy ĐZ ta có:
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\left(1\right)\)
\(\Rightarrow f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\left(2\right)\)
Lấy \(\left(1\right)-\left(2\right)\) ta được:
\(9+3a+3b=9\Leftrightarrow a+b=0\)
Khi đó:
\(\left(a^3+b^3\right)\left(b^5+c^5\right)\left(c^7+d^7\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\left(b^5+c^5\right)\left(c^7+a^7\right)\)
\(=0\) ( theo Huy ĐZ thì \(a+b=0\) )
Ap dung dinh ly Bozout ta co
\(f\left(2\right)=2^3+a.2^2+b.2+c=5\)
<=> \(4a+2b+c=-3\) (1)
tuong tu \(f\left(-1\right)=\left(-1\right)^3+a-b+c=-4\)
<=> \(a-b+c=-3\) (2)
tu (1) va (2) => \(4a+2b=a-b=-3\)
=> a=b+-3
=> \(4\left(b-3\right)+2b=-3\Rightarrow b=\frac{3}{2}\)
=> \(a=-\frac{3}{2}\)
=> \(\left(a^3+b^3\right)=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(\frac{3}{2}-\frac{3}{2}\right)\left(a^2-ab+b^2\right)=0\)
=> gia tri bieu thuc =0
Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )
Khi đó ta có pt :
\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)
\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)
Vì pt trên đúng với mọi x nên :
+) đặt \(x=1\)
\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)
\(\Leftrightarrow-7+a+b+c=0\)
\(\Leftrightarrow a+b+c=7\)(1)
Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :
\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)
Từ (1) và (2) ta có hệ pt 3 ẩn :
\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)
Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)
Vậy....
ai giải dc ko