K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2016

Số dư \(r=0\)

11 tháng 10 2019

Bài 1: Đặt \(f\left(x\right)=\left(x^2+x+1\right)^{10}+\left(x^2-x+1\right)^{10}-2\)

Giả sử  \(f\left(x\right)\)chia hết cho x-1

\(\Rightarrow f\left(x\right)=\left(x-1\right)q\left(x\right)\)

\(\Rightarrow f\left(1\right)=\left(1-1\right)q\left(1\right)\)

               \(=0\)

\(\Leftrightarrow\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=0\)

Mà \(\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=59048\)

\(\Rightarrow\)mâu thuẫn 

\(\Rightarrow f\left(x\right)\)không chia hết cho x-1 ( trái với đề bài )

Bài 2:

x^4-x^3-3x^2+ax+b x^2-x-2 x^2-1 x^4-x^3-2x^2 - - -x^2+ax+b -x^2+x+2 - (a-1)x+b-2

Vì \(x^4-x^3-3x^2+ax+b\)chia cho \(x^2-x-2\)dư \(2x-3\)

\(\Rightarrow\left(a-1\right)x+b-2=2x-3\)

Đồng nhất hệ  số 2 vế ta được:

\(\hept{\begin{cases}a-1=2\\b-2=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=3\\b=-1\end{cases}}\)

Vậy ...

Bài 3:

Vì \(P\left(x\right)\)chia \(x+3\)dư 1

\(\Rightarrow P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)

\(\Rightarrow q\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1\)

                      \(=1\left(1\right)\)

Vì \(P\left(x\right)\)chia \(x-4\)dư 8

\(\Rightarrow P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)

\(\Rightarrow P\left(4\right)=\left(4-4\right)q\left(4\right)+8\)

                    \(=8\left(2\right)\)

Vì \(P\left(x\right)\)chia cho \(\left(x+3\right)\left(x-4\right)\)được thương là 3x và còn dư

\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}-12a+3b=4\\12a+3b=24\end{cases}\Leftrightarrow}\hept{\begin{cases}b=4\\a=1\end{cases}\left(4\right)}}\)

Thay (4) vào (3) ta được:

\(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)

\(\Leftrightarrow P\left(x\right)=3x^3-3x^2-20x+4\)

11 tháng 10 2019

cảm ơn nhé

28 tháng 12 2022

3x3+10x2-5 chia hết cho 3x-1

<=> 3x3-3x3-x2+10x2-5 chia hết cho 3x+1

<=> 9x2-5 chia hết cho 3x+1

<=> 9x2-(9x2+3x)-5 chia hết cho 3x+1

<=> 3x-5 chia hết cho 3x+1

<=> 6 chia hết cho 3x+1 <=> 3x+1 E Ư(6)

Vì 3x+1 chia 3 dư 1

<=> 3x+1 E {1;-2}

<=> 3x E {0;-3} <=> x E {0;-1}

28 tháng 12 2022

ủa -4 mà:))))))))?????????????????

Bài làm: 

Giả sử \(b>c\)

Với mọi \(x\)ta có \(\left(x+a\right)\left(x-4\right)-7=\left(x+b\right)\left(x+c\right)\left(1\right)\)

Với \(x=4\)ta được \(\left(x+b\right)\left(x+c\right)=\left(4+a\right)\cdot0-7=-7\)

Vì \(b,c\in Z\)và \(b>c\)và chúng đề có vai trò như nhau nên ta có hai trường hợp sau:

Trường hợp 1:  \(\hept{\begin{cases}b+4=1\\c+4=-7\end{cases}\Rightarrow\hept{\begin{cases}b=-3\\c=-11\end{cases}}}\). Thay vào \(\left(1\right)\)ta được

\(\left(x+a\right)\left(x-4\right)-7=\left(x-3\right)\left(x-11\right)\)

\(\Leftrightarrow x^2+\left(a-4\right)\cdot x-\left(4a+7\right)=x^2-14x+33\)

\(\Leftrightarrow\left(a-4\right)\cdot x-\left(4a+7\right)=-14x+33\).

\(\Leftrightarrow a-4=-14\)và \(4a+7=-33\Leftrightarrow a=-10\)

Trường hợp 2: \(\hept{\begin{cases}b+4=7\\c+4=-1\end{cases}\Leftrightarrow\hept{\begin{cases}b=3\\c=-5\end{cases}}}\).Giải tương tự như trên ta được \(a=2\)

Vậy \(\orbr{\begin{cases}a=-10;b=-3;c=-11\\a=-10;b=-11;c=3\end{cases}}\)hoặc \(\orbr{\begin{cases}a=2;b=3;c=-5\\a=2;b=-5;c=3\end{cases}}\)

Bạn nhé khi mk giải thì mk chỉ có 2 trường hợp và ra kết quả a,b,c chỉ có hai nhưng khi mình kết luận mình đã kl đến 4 đáp số bởi vì như bạn đã đọc mk đã giả sử b>c nên cả trong hai trường hợp mk chỉ xét b>c thôi vd: ở trường hợp 1 mk chỉ xét b+4=1; c+4=-7 thì suy ra b=-3;c=-11 chứ mình không có xét th b+4=-7;c+4=1 nhé !

                                                                     ~~~~~~~~ GOOD LUCK ~~~~~~~~~~~~~~`

4 tháng 4 2018

Gọi thương của phép chia  f(x)  cho   x+3   là   A(x)

       thương của phép chia  f(x)  cho   x-2   là    B(x)

Ta có:    \(f\left(x\right)=\left(x+3\right).A\left(x\right)+1\)      \(\Rightarrow\)   \(f\left(-3\right)=1\)

             \(f\left(x\right)=\left(x-2\right).B\left(x\right)+6\)                \(f\left(2\right)=6\)

Gọi dư của phép chia  f(x)  cho   x2 + x - 6    là    ax + b

Ta có:     \(f\left(x\right)=\left(x^2+x-6\right).2x+ax+b\)

    \(\Leftrightarrow\)\(f\left(x\right)=\left(x-2\right)\left(x+3\right).2x+ax+b\)

Lần lượt thay  \(x=2;\) \(x=-3\)  ta có:

       \(\hept{\begin{cases}f\left(2\right)=2a+b=6\\f\left(-3\right)=-3a+b=1\end{cases}}\)        \(\Rightarrow\)     \(\hept{\begin{cases}a=1\\b=4\end{cases}}\)

Vậy   \(f\left(x\right)=\left(x^2+x-6\right).2x+x+4\)

                     \(=2x^3+2x^2-11x+4\)