Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm h(x) = f(x) - g(x)
f(x) - g(x) = (-2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2) - (2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2)
= -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2 - 2x2 + x3 - 3x - 3x3 - x2 + x + 9x - 2
= (-2x2 + x2 + 4x2 - 2x2 - x2) + (-3x3 + 5x3 + x3 - 3x3) + (-5x - x + 4x - 3x + x + 9x) + (3 - 2)
= 5x + 1
Vậy h(x) = 5x + 1
b) Tìm nghiệm của đa thức h(x)
Cho h(x) = 0
\(\Leftrightarrow\) 5x + 1 = 0
5x = 0 + 1
5x = 1
x = \(\dfrac{1}{5}\)
Vậy x = \(\dfrac{1}{5}\) là nghiệm của đa thức h(x).
a)h(x)=f(x)-g(x)
=(2x3 +3x2 -2x +3)-(2x3 +3x2 -7x +2)
=2x3 + 3x2 - 2x +3 - 2x3 -3x2 + 7x -2
=5x+1
b)h(x)=5x+1=0
=>5x=-1
x=\(\frac{-1}{5}\)
a: \(M\left(x\right)=9x^4+2x^2-x-6\)
\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)
b: \(P\left(x\right)=8x^4-x^3+3x-5\)
\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)
A(x) = x2 + 5x4 - 3x3 + x2 - 4x4 + 3x3 - x + 5
= ( 5x4 - 4x4 ) + ( 3x3 - 3x3 ) + ( x2 + x2 ) - x + 5
= x4 + 2x2 - x + 5
B(x) = x - 5x3 - x2 - x4 + 5x3 - x2 - 3x + 1
= -x4 + ( 5x3 - 5x3 ) + ( -x2 - x2 ) + ( -3x + x ) + 1
= -x4 - 2x2 - 2x + 1
M(x) = A(x) + B(x)
= x4 + 2x2 - x + 5 + ( -x4 - 2x2 - 2x + 1 )
= x4 + 2x2 - x + 5 - x4 - 2x2 - 2x + 1
= -3x + 6
N(x) = A(x) - B(x)
= x4 + 2x2 - x + 5 - ( -x4 - 2x2 - 2x + 1 )
= x4 + 2x2 - x + 5 + x4 + 2x2 + 2x - 1
= 2x4 + 4x2 + x + 4
M(x) = 0 <=> -3x + 6 = 0
<=> -3x = -6
<=> x = 2
Vậy nghiệm của M(x) là 2
Ta có : 5x+1-(5x-x^2)=0
5x+1-5x+x^2=0
(5x-5x)+1+x^2=0
0+1+x^2=0
1=x^2
\(\Rightarrow\)1^2=x^2
\(\Rightarrow\)x=1
Vậy nghiệm của đa thức trên là 1.
Ta có \(Q\left(1\right)=5-5+a^2-a=0\Leftrightarrow a\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)