Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-25\right)f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\) (1)
Thay \(x=2\) vào (1) ta được:
\(-21.f\left(3\right)=0.f\left(1\right)=0\Rightarrow f\left(3\right)=0\)
\(\Rightarrow x=3\) là 1 nghiệm của \(f\left(x\right)\)
Thay \(x=5\) vào (1):
\(0.f\left(6\right)=3.f\left(4\right)\Rightarrow f\left(4\right)=0\)
\(\Rightarrow x=4\) là 1 nghiệm
Thay \(x=-5\) vào (1):
\(0.f\left(-4\right)=-7.f\left(-6\right)\Rightarrow f\left(-6\right)=0\)
\(\Rightarrow x=-6\) là 1 nghiệm
Vậy \(f\left(x\right)\) có ít nhất 3 nghiệm là \(x=\left\{3;4;-6\right\}\)
Thay x = -3 thì 1 là nghiệm của P(x)
Thay x = 5 thì 5 là nghiệm của P(x)
Vậy P(x) có ít nhất 2 nghiệm là 1 và 5.
Chúc bạn học tốt.
x=0⇒0.h(1)=2.h(0)=0⇒h(0)=0x=0⇒0.h(1)=2.h(0)=0⇒h(0)=0=> x=0 là nghiệm
x=−2⇒−2h(−1)=0.h(−3)⇒h(-1)=0=> x=-1 là nghiệm
Vậy đa thức f(x) có hai nghiệm x={0,-1} => dpcm
Vậy h(x) có 2 nghiệm nhé. Sorry viết nhầm
+) Với x = 0 ta có :
\(0.f\left(0-2\right)=\left(0-4\right).f\left(0\right)\)
\(\Rightarrow0.f\left(-2\right)=-4.f\left(0\right)\)
\(\Rightarrow0=-4.f\left(0\right)\)
\(\Rightarrow f\left(0\right)=0\)
Như vậy x = 0 là một nghiệm của đa thức f(x)
+) Với x = 4 ta có :
\(4.f\left(4-2\right)=\left(4-4\right).f\left(4\right)\)
\(\Rightarrow4.f\left(2\right)=0.f\left(4\right)\)
\(\Rightarrow4.f\left(2\right)=0\)
\(\Rightarrow f\left(2\right)=0\)
Như vậy x = 4 là một nghiệm của đa thức f(x)
Vậy đa thức f(x) có ít nhất hai nghiệm
_Chúc bạn học tốt_
Khi x=-3 thì ta sẽ có:
(9-9)*P(-3)=(-6-2)*P(-3+1)
=>-8*P(-2)=0*P(-3)=0
=>x=-2 là nghiệm của P(x)
Khi x=3 thì ta sẽ có;
(9-9)*P(3)=(2*3-2)*P(3+1)
=>4P(4)=0
=>P(4)=0
=>x=4 là nghiệm của P(x)
Khi x=1 thì ta sẽ có:
(2-2)*P(2)=(1-9)*P(1)
=>-8*P(1)=0
=>P(1)=0
=>x=1 là nghiệm của P(x)
=>ĐPCM
1) Thay x=3 vào đẳng thức, thu được:
\(3\times f\left(3+2\right)=\left(3^2-9\right)\times f\left(3\right)\)
\(\Leftrightarrow\) \(3\times f\left(5\right)=0\times f\left(3\right)=0\)
\(\Leftrightarrow\) \(f\left(5\right)=0\)
2) Ta đã chứng minh x=5 là nhiệm của f(x)\(\Rightarrow\)Cần chứng minh f(x) có 2 nghiệm nữa
- Thay x=0 Vào đẳng thức, thu được
\(0\times f\left(0+2\right)=\left(0^2-9\right)\times f\left(0\right)\)
\(\Leftrightarrow\) \(f\left(0\right)=0\)
\(\Rightarrow\)x=0 là ngiệm của f(x)
- Thay x=-3 và đẳng thức, thu được
\(-3\times f\left(-3+2\right)=\left(\left(-3\right)^2-9\right)\times f\left(-3\right)\)
\(\Leftrightarrow\)\(-3\times f\left(-1\right)=0\times f\left(-3\right)=0\)
\(\Leftrightarrow\)\(f\left(-1\right)=0\)
\(\Rightarrow\)x=-1 là nghiệm của f(x)
Vậy f(x) có ít nhất 3 nghiệm là x=5; x=0; x=-1
đề bài yêu cầu gì vậy bạn
Ta có:
Với x=0.=> 0.h(0+1) = (0+2). h(0) => 2. h(0)= 0 . Mà 2 khác 0 nên h(0)= 0 . => o là nghiệm của h(x).
Với x=-2=> -2. h(-2+1)= (-2+2). h(-2) => -2.h(-1)=0.=> h(-1)= 0. => x=-1 là ngiệm của h(x).
Vậy đa thức h(x) có ít nhất 2 nghiệm. Nhớ k đúng cho mìn nha. Thanks!!