Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45
a) Ta có: \(f\left(1\right)=3.1^3-2.1^2+4.1-5\)
\(=3-2+4-5\)
\(=0\)
\(\Rightarrow f\left(x\right)⋮x-1\) ( chỗ này khó hiểu chút nhé bạn có gì hỏi mình)
Vậy x-1 là nghiệm của đa thức
b) Ta có: \(f\left(1\right)=a.1^3+b.1^2+c.1+d\)
\(=a+b+c+d=0\)
\(\Rightarrow f\left(x\right)⋮x-1\)
Vậy x-1 là nghiệm của đa thức
Cách 2:
\(f\left(x\right)=3x^3-2x^2+4x-5\)
\(=3x^3-3x^2+x^2-x+5x-5\)
\(=3x^2.\left(x-1\right)+x.\left(x-1\right)+5.\left(x-1\right)\)
\(=\left(x-1\right).\left(3x^2+x+5\right)\)
\(\Rightarrow f\left(x\right)⋮x-1\)
Ta có f(x)=ax2+bx+c
f(0)=a.02+b.0+c=0+0+c=1\(\Rightarrow\)c=1.
f(1)=a.12+b.1+c=a+b+c=-1 (1)
f(-1)=a.(-1)2+b.(-1)+c=a-b+c=5 (2)
Thay c=1 vào (1), ta có:
a+b+c=a+b+1=-1\(\Rightarrow\)a+b=-2
a-b+c=a-b+1=5\(\Rightarrow\)a-b=4
\(\Rightarrow\)(a+b)+(a-b)=2a=-2+4=2\(\Rightarrow\)a=1
a+b=1+b=-2\(\Rightarrow\)b=-3
Lời giải:
a)
\(f(1)=a.1^2+b.1+c=a+b+c\)
\(f(2)=a.2^2+b.2+c=4a+2b+c\)
b)
\(f(-2)=a(-2)^2+b(-2)+c=4a-2b+c\)
Do đó:
\(f(1)+f(-2)=(a+b+c)+(4a-2b+c)=5a-b+2c=0\)
\(\Rightarrow f(-2)=-f(1)\)
\(\Rightarrow f(1)f(-2)=-f(1)^2\leq 0\)
c)
Với $a=1,b=2,c=3$ thì :
\(f(x)=x^2+2x+3=x(x+1)+(x+1)+2=(x+1)(x+1)+2\)
\(=(x+1)^2+2\)
Vì \((x+1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow f(x)=(x+1)^2+2\geq 2>0\)
Vậy $f(x)\neq 0$
Do đó $f(x)$ không có nghiệm.
a) f(0) = c; f(0) nguyên => c nguyên (*)
f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên (**)
f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên (***)
Từ (*)(**)(***) => a + b và 4a + 2b nguyên
4a + 2b = 2a + 2.(a + b) có giá trị nguyên mà 2(a+ b) nguyên do a+ b nguyên
nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên
b) f(3) = 9a + 3b + c = (a+ b + c) + (4a + 2b) + 4a
Vì a+ b + c ; 4a + 2b; 4a đều có giá trị nguyên nên f(3) có giá trị nguyên
f(4) = 16a + 4b + c = (a+ b) + (9a + 3b + c) + 3. 2a
Vì a+ b; 9a + 3b + c; 2a đều nguyên nên f(4) có giá trị nguyên
f(5) = 25a + 5b + c = (16a + 4b + c) + (a+ b) + 4. 2a
Vì 16a + 4b + c ; a+ b; 2a đều có giá trị nguyên nên f(5) có giá trị nguyên
1. Ta có: h(1)=2 ⇔ a1+b=2 ⇔ b=2-a (1) h(2)=1 ⇔ a2+b=1 ⇔ b=1-2a (2) Từ (1) và (2) => 2-a=1-2a⇔2-1=a-2a⇔1=-a=> a=-1
Thay a=-1 vào (1) ta có: b=2-(-1) => b=3
Vậy b=3 và a=-1
Ta có:
Đa thức: \(f\left(x\right)=ax^2+bx+c\) ⋮ 5
\(\Rightarrow f\left(x\right)=5\cdot\left(\dfrac{a}{5}x^2+\dfrac{b}{5}x+\dfrac{c}{5}\right)\) ⋮ 5
\(\Rightarrow a,b,c\in B\left(5\right)\)
Vậy khi f(x) chia hết cho 5 thì a,b,c chia hết cho 5
f=84[05\66\ơ515[52[ư4[\
7;ơ4411[ư1[5
4
4['\
vì
ik
k\uyke]
'uy
'^k''m '\7ys'tfdh'se\ử'ý'0rtư