\(f\left(x\right)=x^5-5x^4+9x^3-9x^2+8x-4\)

a) Phân tích đa thức f(x)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

a, f(x)= (x^5-x^4)-(4x^4-4x^3)+(5x^3-5x^2)-(4x^2-4x)+(4x-4)

         =x^4(x-1)-4x^3(x-1)+5x^2(x-1)-4x(x-1)+4(x-1)

        =(x^4-4x^3+5x^2-4x+4)(x-1)

       =[(x^4-2x^3)-(2x^3-4x^2)+(x^2-2x)-(2x-4)](x-1)

       =(x^3-2x^2+x-2)(x-2)(x-1)

      =(x^2+1)(x-2)^2(x-1)

8 tháng 3 2018

a, => p^2 = 5q^2 + 4

+, Nếu q chia hết cho 3 => q=3 => p=7 ( t/m )

+, Nếu q ko chia hết cho 3 => q^2 chia 3 dư 1 => 5q^2 chia 3 dư 5

=> p^2 = 5q^2 + 4 chia hết cho 3

=> p chia hết cho 3 ( vì 3 là số nguyên tố )

=> p = 3 => q = 1 ( ko t/m )

Vậy p=7 và q=3

Tk mk nha

3 tháng 10 2018

bài 1 : a) ta có : \(a=\sqrt{2}+\sqrt{7\sqrt[3]{61+46\sqrt{5}}}+1=\sqrt{2}+\sqrt{7\sqrt[3]{\left(1+2\sqrt{5}\right)^3}}+1\)

\(=\sqrt{2}+\sqrt{7+14\sqrt{5}}+1\)

ta có : \(a^4-14a^2+9=0\Leftrightarrow\left(a^2\right)-14a^2+9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a^2=7+2\sqrt{10}\\a^2=7-2\sqrt{10}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=89+28\sqrt{10}\\a=89-28\sqrt{10}\end{matrix}\right.\)

\(\Rightarrow\) đề sai

sữa đề rồi mk sẽ lm .

bài 2 : a) ta có : \(a=\dfrac{\sqrt[3]{7+5\sqrt{2}}}{\sqrt{4+2\sqrt{3}}-\sqrt{3}}=\dfrac{\sqrt[3]{\left(\sqrt{2}+1\right)^3}}{\sqrt{\left(\sqrt{3}+1\right)^2}-3}=\sqrt{2}+1\)

+) ta có phương trình bật nhất thì chắc chắn không được .

+) phương trình bậc 2 : số liên hợp có tổng nguyên của nó là : \(1-\sqrt{2}\)

\(\Rightarrow\) \(\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)=1-2=-1\)\(1-\sqrt{2}+1+\sqrt{2}=2\)

theo vi ét đảo \(\Rightarrow\) \(1+\sqrt{2}\)\(1-\sqrt{2}\) là nghiệm của \(X^2-2X-1=0\)

b) ta có : \(3x^6+4x^5-7x^4+6x^3+6x^2+x-53\sqrt{2}\)

\(=3x^6-6x^5-3x^4+10x^5-20x^4-10x^3+16x^4-32x^3-16x^2+48x^3-96x^2-48x+118x^2+49x+58\sqrt{2}\)

\(=3x^4\left(x^2-2x-1\right)+10x^3\left(x^2-2x-1\right)+16x^2\left(x^2-2x-1\right)+48x\left(x^2-2x-1\right)+118x^2+49x+58\sqrt{2}\)

\(=118a^2+49a+58\sqrt{2}\)

\(=118\left(1+\sqrt{2}\right)^2+49\left(1+\sqrt{2}\right)+58\sqrt{2}\)

\(=118\left(3+2\sqrt{2}\right)+49+49\sqrt{2}+58\sqrt{2}\)

\(=403+343\sqrt{2}\)