Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3b : Ta có : \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)
\(=x^2+2xy+y^2+x^2-2x+1=\left(x+y\right)^2+\left(x-1\right)^2\)
Vậy biểu thức luôn nhận giá trị ko âm với mọi x ; y
1.Thay x=5,y=3 vào đa thức P,ta được:
2x(x+y-1)+y^2+1
=2.5(2+3-1)+3^2+1
=10.4+9+1
=40+(9+1)
=50
a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)=> \(\left(2x-1\right)^2+3\ge3\)
=> \(\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra <=> 2x - 1 = 0 <=> x = 1/2
Vậy MaxB = 5/3 khi x = 1/2
b) x = -5; y = 3 => P = 2. (-5).(-5 + 3 - 1) + 32 + 1 = -10. (-3) + 9 + 1 = 30 + 10 = 40
P = 2x(x + y - 1) + y2 + 1
P = 2x2 + 2xy - 2x + y2 + 1
P = (x2 + 2xy + y2) + (x2 - 2x + 1)
P = (x + y)2 + (x - 1)2 \(\ge\)0
=> P luôn nhận giá trị không âm với mọi x;y
a) Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x-1\right)^2+3\ge3\forall x\)
\(\Rightarrow\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\forall x\)
hay \(B\le\frac{5}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow2x-1=0\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(maxB=\frac{5}{3}\Leftrightarrow x=\frac{1}{2}\)
b) - Thay \(x=-5\)và \(y=3\)vào biểu thức ta được:
\(P=2.\left(-5\right).\left(-5+3-1\right)+3^2+1=30+9+1=40\)
- Ta có: \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)=\left(x+y\right)^2+\left(x-1\right)^2\)
Vì \(\left(x+y\right)^2\ge0\forall x,y\); \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+y\right)^2+\left(x-1\right)^2\ge0\forall x,y\)
hay P luôn nhận giá trị không âm với mọi x, y ( đpcm )
đề bai chính là cm P>=0
ta có P=(X^2+2XY+Y^2) + (X^2- 2X+1)
=(X+Y)^2 + (X-1)^2
Tổng các pình phương lun >=0
a: A=5x^2y-5x^2y-3xy+2xy+xy+x^4y^2+1+x^2
=x^4y^2+x^2+1
Khi x=-1 và y=1 thì A=(-1)^4*1^2+(-1)^2+1=3
b: A=x^2(x^2y^2+1)+1>=1>0 với mọi x,y
=>A luôn dương với mọi x,y