K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

Đáp án D

Đa giác đều 2n đỉnh có n đường chéo qua tâm. Cứ 2 đường chéo qua tâm tương ứng với 1 hình chữ nhật có 4 đỉnh là đỉnh của đa giác. Do đó số hình chữ nhật là  C n 2

13 tháng 12 2019

28 tháng 7 2017

Đáp án B

Đa giác đều 2n đỉnh có n đường chéo qua tâm. Cứ 2 đường chéo qua tâm tương ứng với 1 hình chữ nhật  \Rightarrow C_n^2 = 45 \Leftrightarrow n = 10

 \Rightarrow C_n^2 = 45 \Leftrightarrow n = 10

4 tháng 1 2018

Đáp án D

Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là: C 2 n 3  

Số đường chéo đi qua tâm là n ⇒ số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là:  C n 2

Số tam giác vuông được tạo thành là  4 C n 2

Ta có:  4 C n 2 C 2 n 3 = 1 5 ⇒ n = 8.

27 tháng 12 2017

Gọi A là biến cố để 3 đỉnh tạo thành một tam giác vuông.

Ta có một đa giác đều 2n cạnh có n đường chéo đi qua tâm.

Ta lấy hai đường chéo thì tạo thành một hình chữ nhật.

Mỗi một hình chữ nhật sẽ có bốn tam giác vuông.

Vậy số tam giác vuông tạo thành từ đa giác đều 2n đỉnh là

29 tháng 7 2017

Chọn C.

Phương pháp:

Nhận xét rằng: Đa giác đều có số đỉnh chẵn luôn tồn tại đường kính của đường tròn ngoại tiếp đa giác là đoạn nối hai đỉnh của đa giác.

Nên ta chia đường tròn ngoại tiếp đa giác đều đó thành hai nửa đường tròn và dựa vào tính đối xứng của các đỉnh để tạo thành một hình chữ nhật

Cách giải:

Ta vẽ đường tròn ngoại tiếp đa giác đều 2018 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó hai nửa đường tròn đều chứa 1009 đỉnh.

Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có một đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.

Như vậy cứ hai đỉnh thuộc nửa đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành một hình chữ nhật.

Vậy số hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho là  C 1009 2

2 tháng 8 2019

Đáp án D.

Gọi n là số đỉnh của đa giác đều.

Khi đó số đường chéo của đa giác đều đó là  n n − 3 2   .

Giải phương trình  n n − 3 2 = 54 ⇔ n 2 − 3 n − 108 = 0 ⇒ n = 12   .

 Đa giác có 6 đường chéo đi qua tâm C 6 2 = 15 .

Cứ hai đường chéo đi qua tâm thì tạo thành một hình chữ nhật. Vậy số hình chữ nhật có 4 đỉnh là 4 đỉnh của đa giác đều đã cho là .

22 tháng 9 2019

Đáp án D.

Gọi n là số đỉnh của đa giác đều.

Khi đó số đường chéo của đa giác đều đó là n n - 3 2 .

Giải phương trình  n n - 3 2 = 54 ⇔ n 2 - 3 n - 108 = 0 ⇒ n = 12

⇒  Đa giác có 6 đường chéo đi qua tâm.

Cứ hai đường chéo đi qua tâm thì tạo thành một hình chữ nhật. Vậy số hình chữ nhật có 4 đỉnh là 4 đỉnh của đa giác đều đã cho là C 6 2 = 15 .

2 tháng 5 2017

Chọn đáp án A

Trong đa giác đều  A 1 A 2 A 3 . . . A 30 nội tiếp trong đường tròn (O) cứ mỗi điểm A 1 có một điểm A I  đối xứng với  A 1  qua O A 1 ≠ A I ta dược một đường kính.

Tương tự với A 2 , A 3 , . . . , A 30 . Có tất cả 15 đường kính mà các điểm là đỉnh của đa giác đều  A 1 A 2 A 3 . . . A 30

Cứ hai đường kính đó ta được một hình chữ nhật mà bốn điểm là các đỉnh của đa giác đều: có C 15 2 = 105 hình chữ nhật tất cả.

18 tháng 6 2017

Đáp án C

Chọn ngẫu nhiên 4 đỉnh của đa giác có C 20 4 = 4845  cách

Đa giác đều 20 đỉnh có 10 đường chéo đi qua tâm đường tròn ngoại tiếp đa giác

Cứ 2 đường chéo bất kì là 2 đường chéo cuiả 1 hình chữ nhật

Do đó số hình chứ nhật là C 20 2 = 45  

Vậy xác suất cần tìm là  P = 45 4845 = 3 323