K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn D

31 tháng 8 2018

Đáp án C

Ta có 3d = 3m = 2c, suy ra C đúng.

31 tháng 5 2017

Cho khối đa diện G có các đỉnh là  lần lượt là số các mặt của H nhận chúng làm đỉnh chung. Tổng số các cạnh của G là:

 

tự nhiên lẻ nên tổng của chúng là số chẵn khi n chẵn.

Ví dụ: Hình chóp ngũ giác  là đỉnh chung của 5 mặt bên. Mỗi đỉnh

B 1 , B 2 , B 3 , B 4 , B 5 , B 6  là đỉnh chung của ba mặt (hình trên).

Giải bài 2 trang 12 sgk Hình học 12 | Để học tốt Toán 12

 

1 tháng 4 2017

Giả sử đa diện (H) có các đỉnh là A1, … Ad gọi m1, … md lần lượt là số các mặt của (H) nhận chúng là đỉnh chung. Như vậy mỗi đỉnh Ak có mk cạnh đi qua. Do mỗi cạnh của (H) là cạnh chung của đúng hai mặt nên tổng số các cạnh của H bằng

c=12(m1+m2+...+md)c=12(m1+m2+...+md)

Vì c là số nguyên, m1, … md là những số lẻ nên Đ phải là số chẵn. Ví dụ : Số đỉnh của hình chóp ngũ giác bằng sáu.


20 tháng 6 2017

câu b. tứ diện đều có số đỉnh bằng số mặt

10 tháng 11 2021

Giả sử đa diện (H)(H) có các đỉnh là A1,…AdA1,…Ad, gọi m1,…mdm1,…md lần lượt là số các mặt của (H)(H) nhận chúng là đỉnh chung, ở đó m1,…mdm1,…md là những số lẻ.

Như vậy mỗi đỉnh AkAk có mkmk cạnh đi qua.

Ta có: đỉnh A1A1 có m1m1 cạnh đi qua.

đỉnh A2A2 có m2m2 cạnh đi qua.

...

đỉnh AdAd có mdmd cạnh đi qua.

Do đó số các cạnh (có thể trùng nhau) của đa diện là m1+m2+...+mdm1+m2+...+md.

Tuy nhiên, do mỗi cạnh là cạnh chung của đúng hai mặt nên số cạnh ở trên được đếm hai lần.

Vậy số cạnh thực tế của (H)(H) bằng

c=12(m1+m2+...+md)c=12(m1+m2+...+md)      

Vì cc là số nguyên, m1,…mdm1,…md là những số lẻ nên dd phải là số chẵn.

Ví dụ : Hình chóp ngũ giác.

Đỉnh S là đỉnh chung của 5 mặt, tất cả các đỉnh còn lại là đỉnh chung của 3 mặt, hình chóp ngũ giác có 6 đỉnh

giup mình cày Sp vơi

16 tháng 3 2018

13 tháng 10 2017

10 tháng 7 2019

Chọn D.

Dễ thấy A'A, B'M, D'N đồng quy tại S, SA' = 2a. Từ đó, ta tính được V S . A ' B ' D ' và  V S . AMN . Suy ra tính được  V H