K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

undefined

30 tháng 4 2021

undefined

Bài 5: Cho tam giác ABC nhọn có đường cao AH. Vẽ phía ngoài tam giác ABC một tam giác ABE vuông cân tại B 1) Chứng minh EBH và BAH bù nhau. 2) Trên tia đổối của tia AH lấy điểm sao cho Al = BC. Chứmg minh AABI = ABEC. 3) Chứng minh EC 1 BI 4) Kẻ Bx vuông góc với IC tại N, Cy vuông góc với AC. Gọi F là giao điểm của Bx và Cy. Tinh số đo góc AFC ? 5) Chứng minh ba đường thẳng AH, CE, BF đồng qui. 6) Tam giác ABC cần thêm điều kiện...
Đọc tiếp

Bài 5: Cho tam giác ABC nhọn có đường cao AH. Vẽ phía ngoài tam giác ABC một tam giác ABE vuông cân tại B 1) Chứng minh EBH và BAH bù nhau. 2) Trên tia đổối của tia AH lấy điểm sao cho Al = BC. Chứmg minh AABI = ABEC. 3) Chứng minh EC 1 BI 4) Kẻ Bx vuông góc với IC tại N, Cy vuông góc với AC. Gọi F là giao điểm của Bx và Cy. Tinh số đo góc AFC ? 5) Chứng minh ba đường thẳng AH, CE, BF đồng qui. 6) Tam giác ABC cần thêm điều kiện gì để: 6.1, Ba điểm 4, E, F thắng hàng. 6.2, Điểm 4 là trung điểm của đoạn thẳng EF. 7) Giả sử tam giác ABC đều có cạnh dài 4cm. Tính độ dài các đoạn thắng 4H, BF và chu vi tam giác IBC (làm trồn đến chữ số thập phân thứ hai)? Bài 6: Cho tam giác AABC cân tại 4. Các đưởng trung tuyến BD và CE cắt nhau tại 1. 1) Chứng minh AABD= AMCE, ABDC = ACEB. 2) Chứng minh AAED, AIED và ABCI là các tam giác cân. 3) Chứng minh đường thẳng AI là đường trung trực của đoạn DE. 4) Chứng minh ED/BC. 5) Trên tia đối của tia DI lấy điểm K sao cho DI DK. Chứng minh AI//CK. 6) Chứng minh / là trung điểm của BK. 7) Gọi H là trung điểm của BC. Qua B kẻ tia Br và tia Cy vuông góc lần lượt với AB và AC cắt nhau tại F.Chứng minh A.1,H.F thắng hàng. 8) Chứng minh BD > CD. 9) Qua A kẻ đường thẳng song song với BC cắt đường thắng BK tại G. Tam giác ABC phải thỏa mãn điều kiện gì để AG = AB. 10) Chứng minh BC+Al > 4ID. Bài 7: Cho tam giác ABC vuông tại 4, có AB < AC, 1) So sánh các góc của AABC,

 
0

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

29 tháng 8 2021

câu c đâu bạn

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD*CB=CA*CE

c: Xét ΔBEC và ΔADC có

CB/CA=CE/CD

góc C chung

=>ΔBEC đồg dạng vơi ΔADC

5 tháng 3 2023

c.ơn ạ