Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik ko bít vẽ hk nha :(
a) xét tam giác AIB và tam giác CIE có:
AI = IC ( BI là đường trung tuyến)
IB = IE ( gt )
góc AIB = góc CIE ( 2 góc đối đỉnh )
=> tam giác AIB = tam giác CIE ( c.g.c)
b) vì tam giác AIB = tam giác CIE ( cm ý a )
=> góc ECI = IAB = 90'
=> EC vuông góc với AC mà AC vuông góc với AB
=> AB // CE ( đpcm )
c) vì BC > AB ( trong tam giác vuông, cạnh huyền > cạnh g vuông ) mà AB = CE ( tam giác AIB = tam giác CIE )
=> BC > CE ( đpcm)
a) Xét Δ AIB và Δ CID:
+ IB = ID (gt).
+ IA = IC (I là trung điểm của AC).
+ ^AIB = ^CID (2 góc đối đỉnh).
=> Δ AIB = Δ CID (c - g - c).
b) Xét tứ giác ABCD có:
+ I là trung điểm của AC (gt).
+ I là trung điểm của BC (IB = ID).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AD = BC và AD // BC (Tính chất hình bình hành).
c) Xét tứ giác KABC có:
+ E là trung điểm của AB (gt).
+ E là trung điểm của KC (EC = EK).
=> Tứ giác KABC là hình bình hành (dhnb).
=> KA // BC (Tính chất hình bình hành).
Mà AD // BC (cmt).
=> 3 điểm D, A, K thẳng hàng (đpcm).
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMEC
b: Ta có: ΔMAB=ΔMEC
=>AB=EC
Ta có: ΔMAB=ΔMEC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
c: Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
d: Xét ΔIAM và ΔKEM có
IA=KE
\(\widehat{IAM}=\widehat{KEM}\)
AM=EM
Do đó: ΔIAM=ΔKEM
=>\(\widehat{IMA}=\widehat{KME}\)
mà \(\widehat{IMA}+\widehat{IME}=180^0\)(hai góc kề bù)
nên \(\widehat{KME}+\widehat{IME}=180^0\)
=>I,M,K thẳng hàng
Bạn tự kẻ hình nhé :v
a) Xét ΔAIB và ΔCIE có :
AI = CI ( gt)
Góc AIB = Góc CIE (2 góc đối đỉnh)
IB = IE (gt)
⇒ ΔAIB = ΔCIE (c.g.c)
b) ⇒ ΔAIB = ΔCIE (c.g.c)
⇒ Góc IBA = Góc IEC (2 góc tương ứng)
Mà 2 góc này lại so le trong với nhau suy ra AB // CE
c) Vì trong tam giác vuông cạnh huyền lớn nhất suy ra trong tam giác vuông ABC canh BC lớn nhất suy ra BC > AB
Mà AB = CE
⇒ BC > CE