K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 8 2021

Áp dụng định lý Pitago cho tam giác vuông ABC

\(AC=\sqrt{AB^2+BC^2}=10\left(cm\right)\)

Áp dụng hệ thức lượng cho tam giác vuông ABC với đường cao BE:

\(AB^2=AE.AC\Rightarrow AE=\dfrac{AB^2}{AC}=6,4\left(cm\right)\)

\(AB.AC=BE.AC\Rightarrow AE=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)

b.

Ta có: \(EC=AC-AE=3,6\left(cm\right)\)

Do AB song song CF, theo định lý Talet:

\(\dfrac{CF}{AB}=\dfrac{CE}{AE}\Rightarrow CF=\dfrac{AB.CE}{AE}=4,5\left(cm\right)\)

\(\Rightarrow DF=DC-CF=8-4,5=3,5\left(cm\right)\)

Áp dụng định lý Pitago cho tam giác vuông ADF:

\(AF=\sqrt{AD^2+DF^2}=\dfrac{\sqrt{193}}{2}\left(cm\right)\)

Pitago tam giác vuông BCF:

\(BF=\sqrt{BC^2+CF^2}=7,5\left(cm\right)\)

Kẻ FH vuông góc AB \(\Rightarrow ADFH\) là hình chữ nhật (tứ giác 3 góc vuông)

\(\Rightarrow FH=AD=6\left(cm\right)\)

\(S_{ABF}=\dfrac{1}{2}FH.AB=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)

NV
9 tháng 8 2021

undefined

27 tháng 2 2019

Vì BM là đường phân giác của góc B nên ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì BN là đường phân giác của góc ngoài đỉnh B nên ta có: BM ⊥ BN

Suy ra tam giác BMN vuông tại B

Theo hệ thức liên hệ giữa đường cao và hình chiếu hai cạnh góc vuông, ta có: A B 2  = AM.AN

Suy ra: AN = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 12 (cm)

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

5 tháng 9 2019

\(\frac{ }{\frac{ }{ }an}\) AN NC = AB BC ( tính chất của đừng phân gác) để tính AN mk lm thế có đúng ko

17 tháng 6 2017

Áp dụng định lý Pitago cho ABH vuông tại A có:

Vì BM là tia phân giác trong của góc B ⇒ M A M C = A B B C  (Tính chất đường phân giác)

⇒ M A M C + M A = A B B C + A B ⇒ M A A C = A B B C + A B ⇒ M A 8 = 6 10 + 6 ⇒ MA = 3cm

Vì BM; BN là tia phân giác trong và ngoài của góc B ⇒ N B M ^ = 90 0

Áp dụng hệ thức lượng trong ABM vuông tại B có đường cao BA ta có:

Đáp án cần chọn là: D

2 tháng 8 2020

N B A M C

Vì BM là đường phân giác của góc B nên ta có :

\(\frac{MA}{MC}=\frac{AB}{BC}\Rightarrow\frac{MA}{MA+MC}=\frac{AB}{AB+AC}\)

\(\Rightarrow MA=\frac{AB.\left(MA+MC\right)}{AB+BC}=\frac{6.8}{6+10}=\frac{48}{16}=3\left(cm\right)\)

Vì BN là đường phân giác của góc ngoài đỉnh B nên ta có: \(BM\perp BN\)

Suy ra tam giác BMN vuông tại B

Theo hệ thức liên hệ giữa đường cao và hình chiếu hai cạnh góc vuông, ta có: AB2 = AM . AN

Suy ra: \(AN=\frac{AB^2}{AM}=\frac{6^2}{3}=\frac{36}{3}=12\left(cm\right)\)

Tính được mỗi AM , AN nên thông cảm 😅