Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Leftrightarrow x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
\(B=\dfrac{16.\left(-z\right)}{z}+\dfrac{3.\left(-x\right)}{x}-\dfrac{2019.\left(-y\right)}{y}=2019-19=2000\)
Ta có:
\(x^3+y^3+z^3=3xyz\left(gt\right)\)
\(\Rightarrow x^3+y^3+z^3-3xyz=0\)
\(\Rightarrow x^3+y^3+3xy\left(x+y\right)+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Rightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Rightarrow\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)=0\)
\(\Rightarrow\left(x+y+z\right)^3-\left(x+y+z\right)\left(3xy+3zx+3yz\right)=0\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xy-3xz-3yz\right)=0\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(\Rightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=0\\\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\end{matrix}\right.\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
\(\Rightarrow x=y=z\)
Xét trường hợp x = y = z, ta có:
\(P=\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(P=\dfrac{x^3}{2x.2x.2x}\)
\(P=\dfrac{x^3}{8x^3}\)
\(P=\dfrac{1}{8}\)
Xét trường hợp x + y + z = 0, ta có:
\(\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(y+x\right)\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{-\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\Rightarrow P=-1\)
Ta có: x3 + y3 + z3 = 3xyz
x3 + y3 + z3 - 3xyz = 0
x3 + 3x2y + 3xy2 + y3 + z3 - 3xy(x + y) - 3xyz = 0
(x + y)3 + z2 - 3xy(x + y + z) = 0
(x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0
(x + y + z)(x2 + 2xy + y2 - xz - yz + z2) - 3xy(x + y + z) = 0
(x + y + z)(x2 + 2xy + y2 - xz - yz + z2 - 3xy) = 0
(x + y + z)(x2 + y2 + z2 - xz - yz - xy) = 0
=> x + y + z = 0 hoặc x2 + y2 + z2 - xz - yz - xy = 0
+) Với x + y + z = 0
<=> x + y = -z, x + z = -y, y + z = -x
Thay x + y = -z, x + z = -y, y + z = -x vào P, ta có:
\(P=\frac{xyz}{\left(-z\right)\left(-x\right)\left(-y\right)}=-1\)
+) Với x2 + y2 + z2 - xz - yz - xy = 0
=> 2x2 + 2y2 + 2z2 - 2xz - 2yz - 2xy = 0
=> (x2 - 2xy + y2) + (x2 - 2xz + z2) + (y2 - 2yz + z2) = 0
=> (x - y)2 + (x - z)2 + (y - z)2 = 0
=> (x - y)2 = 0 và (x - z)2 = 0 và (y - z)2 = 0
=> x = y và x = z và y = z
=> x = y = z
Thay x = y = z vào P, ta có:
\(P=\frac{xxx}{\left(x+x\right)\left(x+x\right)\left(x+x\right)}=\frac{x^3}{\left(2x\right)^3}=\frac{x^3}{8x^3}=\frac{1}{8}\)
Lời giải:
$x^3+y^3+z^3-3xyz=0$
$\Leftrightarrow (x+y)^3-3xy(x+y)+z^3-3xyz=0$
$\Leftrightarrow (x+y)^3+z^3-3xy(x+y+z)=0$
$\Leftrightarrow (x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)=0$
$\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0$
Đến đây xét 2TH:
TH1: $x+y+z=0$
\(\Rightarrow \left\{\begin{matrix} x+y=-z\\ y+z=-x\\ x+z=-y\end{matrix}\right.\)
\(\Rightarrow B=-16+(-3)+(-2038)=-2057\)
TH2: $x^2+y^2+z^2-xy-yz-xz=0$
$\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0$
$\Rightarrow (x-y)^2=(y-z)^2=(z-x)^2=0$
$\Rightarrow x=y=z$ (vô lý vì $x,y,z$ đôi một khác nhau)
Vậy.......
\(x^3+y^3+z^3-3xyz=0\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=0\\x=y=z\end{matrix}\right.\)
- Nếu \(x+y+z=0\Rightarrow B=\frac{-16z}{z}-\frac{3x}{x}-\frac{2038y}{y}=...\)
- Nếu \(x=y=z\Rightarrow B=\frac{16.2z}{z}+\frac{3.2x}{x}+\frac{2038.2y}{y}=...\)
xem lại đề; x = 1 -> đề sai
Đề bài có lẽ bị sai , nếu thử x = 5 , y = 7 , z = 8