K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có u6 = u1.q5 = 192 và u7 = u1.q6 = 384

Xét: \(\frac{{{u_6}}}{{{u_7}}} = \frac{{{u_1}{q^5}}}{{{u_1}.{q^6}}} = \frac{1}{q} = \frac{{192}}{{384}} = \frac{1}{2}\)

Suy ra: u1 = \(192:{\left( {\frac{1}{2}} \right)^5} = 6144\).

Vậy cấp số nhân có số hạng đầu u1 = 6 144 và công bội \(q = \frac{1}{2}\).

b) Ta có: u1 + u2 + u3 = u1 + u1.q + u1.q2 = 7

⇔ u1.(1 + q + q2) = 7

Và u5 – u2 = u1.q4 – u1.q = 14

⇔ u1q(q3 – 1) = 14

Suy ra: \(\frac{{{u_1}\left( {1 + q + {q^2}} \right)}}{{{u_1}q\left( {{q^3} - 1} \right)}} = \frac{7}{{14}}\)

\( \Leftrightarrow \frac{{{u_1}\left( {1 + q + {q^2}} \right)}}{{{u_1}q\left( {q - 1} \right)\left( {1 + q + {q^2}} \right)}} = \frac{7}{{14}}\)

⇔ 2 = q(q – 1)

⇔ q2 – q – 2 = 0

⇔ \(\left[{}\begin{matrix}q=2\\q=-1\end{matrix}\right.\)

Với q = 2 thì u1 = 1.

Với q = – 1 thì u1 = 7.

9 tháng 4 2017

a)

{u6=192u7=384⇔{u1.q5=192(1)u1.q6=384(2){u6=192u7=384⇔{u1.q5=192(1)u1.q6=384(2)

Lấy (2) chia (1): q = 2 thế vào (1):

(1) ⇔ u1.25 = 192 ⇔ u1 = 6

Vậy u1 = 6 và q = 2

b) Ta có:

{u4−u2=72u5−u3=144⇔{u1.q3−u1.q=72u1.q4−u1.q2=144⇔{u1.q(q2−1)=72(1)u1.q2(q2−1)=144(2){u4−u2=72u5−u3=144⇔{u1.q3−u1.q=72u1.q4−u1.q2=144⇔{u1.q(q2−1)=72(1)u1.q2(q2−1)=144(2)

Lấy 2 chia 1: q = 2 thế vào (1)

(1) ⇔2u1(4 – 1) = 72 ⇔ u1 = 12

Vậy u1 = 12 và q = 2

c) Ta có:

{u2+u5−u4=10u3+u6−u5=20⇔{u1.q+u1.q4−u1.q3=10u1.q2(q2−1)=144(2)⇔{u1q(1+q3−q2)=10(1)u1q(1+q3−q2)=20(2){u2+u5−u4=10u3+u6−u5=20⇔{u1.q+u1.q4−u1.q3=10u1.q2(q2−1)=144(2)⇔{u1q(1+q3−q2)=10(1)u1q(1+q3−q2)=20(2)

Lấy (2) chia (1): q = 2 thế vào (1)

(1) ⇔ 2u1 (1 + 8 – 4) = 10 ⇔ u1 = 1

Vậy u1 = 1 và q = 2


a: 

ĐKXĐ: \(q\notin\left\{0;1;-1\right\}\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}u1\cdot q^4-u1=15\\u1\cdot q^3-u1\cdot q=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{q^4-1}{q^3-q}=\dfrac{15}{6}=\dfrac{5}{2}\\u1\left(q^4-1\right)=15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2q^4-2=5q^3-5q\\u1\left(q^4-1\right)=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2q^4-5q^3+5q-2=0\\u1\left(q^4-1\right)=15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(q-2\right)\left(q-1\right)\left(q+1\right)\left(2q-1\right)=0\\u1\left(q^4-1\right)=15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\\u1\left(q^4-1\right)=15\end{matrix}\right.\)

TH1: q=2

=>\(u1=\dfrac{15}{2^4-1}=\dfrac{15}{15}=1\)

TH2: q=1/2

=>\(u1=\dfrac{15}{\dfrac{1}{16}-1}=15:\dfrac{-15}{16}=-16\)

b:

 

 \(HPT\Leftrightarrow\left\{{}\begin{matrix}u1-u1\cdot q^2+u1\cdot q^4=65\\u1+u1\cdot q^6=325\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{q^4-q^2+1}{q^6+1}=\dfrac{1}{5}\\u1\left(1+q^6\right)=325\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{q^2+1}=\dfrac{1}{5}\\u1\left(q^6+1\right)=325\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}q^2=4\\u1\left(q^6+1\right)=325\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}q\in\left\{2;-2\right\}\\u1\left(q^6+1\right)=325\end{matrix}\right.\Leftrightarrow u1=\dfrac{325}{65}=5\)

c: \(HPT\Leftrightarrow\left\{{}\begin{matrix}u1\cdot q^3+u1\cdot q^5=-540\\u1\cdot q+u1\cdot q^3=-60\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{q^5+q^3}{q^3+q}=9\\u1\left(q+q^3\right)=-60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}q^2=9\\u1\left(q+q^3\right)=-60\end{matrix}\right.\)

TH1: q=3

\(u1=-\dfrac{60}{3+3^3}=-\dfrac{60}{30}=-2\)

TH2: q=-3

=>\(u1=-\dfrac{60}{-3-27}=\dfrac{60}{30}=2\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\left\{ \begin{array}{l}{u_5} = 96\\{u_6} = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\{u_1}.{q^5} = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\\left( {{u_1}.{q^4}} \right).q = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\96q = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}q = 2\\{u_1} = 6\end{array} \right.\)

Vậy cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 6\) và công bội \(q = 2\).

b)

\(\left\{ \begin{array}{l}{u_4} + {u_2} = 60\\{u_5} - {u_3} = 144\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^3} + {u_1}.q = 60\\{u_1}.{q^4} - {u_1}.{q^2} = 144\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.q\left( {{q^2} + 1} \right) = 60\left( 1 \right)\\{u_1}.{q^2}\left( {{q^2} - 1} \right) = 144\left( 2 \right)\end{array} \right.\)

Do \({u_1} = 0\) và \(q = 0\) không là nghiệm của hệ phương trình nên chia vế với vế của (2) cho (1) ta được:

\(\frac{{q\left( {{q^2} - 1} \right)}}{{{q^2} + 1}} = \frac{{144}}{{60}} \Leftrightarrow \frac{{q\left( {{q^2} - 1} \right)}}{{{q^2} + 1}} =\frac{{12}}{{5}} \Leftrightarrow 5q\left( {{q^2} - 1} \right) = 12\left( {{q^2} + 1} \right)\)

\( \Leftrightarrow 5{q^3} - 12q = 5{q^2} + 12 \Leftrightarrow 5{q^3} - 12{q^2} - 5q - 12 = 0 \Leftrightarrow q=3\) thế vào (1) ta được \({u_1}=2\).

Vậy cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 2\) và công bội \(q = 3\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a)

\(\left\{ \begin{array}{l}{u_5} - {u_1} = 15\\{u_4} - {u_2} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} - {u_1} = 15\\{u_1}.{q^3} - {u_1}.q = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^4} - 1} \right) = 15\\{u_1}.\left( {{q^3} - q} \right) = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^2} - 1} \right)\left( {{q^2} + 1} \right) = 15\left( 1 \right)\\{u_1}.q\left( {{q^2} - 1} \right) = 6\left( 2 \right)\end{array} \right.\)

Do \(q =  \pm 1\) không là nghiệm của hệ phương trình nên chia vế với vế của (2) cho (1) ta được:

\(\frac{q}{{{q^2} + 1}} = \frac{6}{{15}} \Leftrightarrow 15q = 6\left( {{q^2} + 1} \right) \Leftrightarrow 15q = 6{q^2} + 6 \Leftrightarrow 6{q^2} - 15q + 6 = 0 \Leftrightarrow \left[ \begin{array}{l}q = \frac{1}{2}\\q = 2\end{array} \right.\)

Với \(q = \frac{1}{2}\) thế vào (2) ta được: \({u_1}.\frac{1}{2}\left( {{{\left( {\frac{1}{2}} \right)}^2} - 1} \right) = 6 \Leftrightarrow {u_1} =  - 16\).

Với \(q = 2\) thế vào (2) ta được: \({u_1}.2\left( {{2^2} - 1} \right) = 6 \Leftrightarrow {u_1} = 1\).

Vậy có hai cấp số nhân \(\left( {{u_n}} \right)\) thoả mãn:

‒ Cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = 2\).

‒ Cấp số nhân có số hạng đầu \({u_1} =  - 16\) và công bội \(q = \frac{1}{2}\).

b)

\(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 65\\{u_1} + {u_7} = 325\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} - {u_1}.{q^2} + {u_1}.{q^4} = 65\\{u_1} + {u_1}.{q^6} = 325\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 - {q^2} + {q^4}} \right) = 65\left( 1 \right)\\{u_1}\left( {1 + {q^6}} \right) = 325\left( 2 \right)\end{array} \right.\)

Chia vế với vế của (1) cho (2) ta được:

\(\begin{array}{l}\frac{{1 - {q^2} + {q^4}}}{{1 + {q^6}}} = \frac{{65}}{{325}} \Leftrightarrow \frac{{1 - {q^2} + {q^4}}}{{1 + {q^6}}} = \frac{1}{5} \Leftrightarrow 1 + {q^6} = 5\left( {1 - {q^2} + {q^4}} \right)\\ \Leftrightarrow 1 + {q^6} = 5 - 5{q^2} + 5{q^4} \Leftrightarrow {q^6} - 5{q^4} + 5{q^2} - 4 = 0\end{array}\)

Đặt \({q^2} = t\left( {t \ge 0} \right)\). Khi đó phương trình có dạng:

\({t^3} - 5{t^2} + 5t - 4 = 0 \Leftrightarrow t = 4 \Leftrightarrow {q^2} = 4 \Leftrightarrow q =  \pm 2\)

Với \(q =  - 2\) thế vào (2) ta được: \({u_1}\left( {1 + {{\left( { - 2} \right)}^6}} \right) = 325 \Leftrightarrow {u_1} = 5\).

Với \(q = 2\) thế vào (2) ta được: \({u_1}\left( {1 + {2^6}} \right) = 325 \Leftrightarrow {u_1} = 5\).

Vậy có hai cấp số nhân \(\left( {{u_n}} \right)\) thoả mãn:

‒ Cấp số nhân có số hạng đầu \({u_1} = 5\) và công bội \(q = 2\).

‒ Cấp số nhân có số hạng đầu \({u_1} = 5\) và công bội \(q =  - 2\).

17 tháng 9 2023

a) \(\left\{{}\begin{matrix}u_5=96\\u_7=384\end{matrix}\right.\)

\(u^2_6=u_5.u_7=96.384=36864\)

\(\Leftrightarrow u_6=192\)

\(q=\dfrac{u_7}{u_6}=\dfrac{384}{192}=2\)

\(u_5=u_1.q^4\)

\(\Leftrightarrow u_1=\dfrac{u_5}{q^4}=\dfrac{96}{2^4}=6\)

b) \(\left\{{}\begin{matrix}u_4-u_2=25\\u_3-u_1=50\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1.q^3-u_1.q=25\\u_1.q^2-u_1=50\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1.q\left(q^2-1\right)=25\left(1\right)\\u_1.\left(q^2-1\right)=50\left(2\right)\end{matrix}\right.\)

\(\left(1\right):\left(2\right)\Leftrightarrow q=\dfrac{25}{50}=\dfrac{1}{2}\)

\(\left(2\right)\Leftrightarrow u_1=\dfrac{50}{q^2-1}=\dfrac{50}{\dfrac{1}{4}-1}=-\dfrac{200}{3}\)

9 tháng 4 2017

a) Từ hệ thức đã cho ta có:

hay

.Giải hệ này tìm u1 và d. Đáp số u1 = 16, d = -3.

b) Từ hệ đã cho ta có:

hay

Giải hệ này để tìm u1 và d. Đáp số u1 = 3 và d = 2 hoặc u1 = -17 và d = 2

u1 = 3 và d = 2 hoặc u1 = -17 và d = 2.

24 tháng 5 2017

Gọi số hạng đầu và công bội của cấp số nhân là: \(u_1;q\).
a) Theo tính chất của cấp số nhân ta có:
\(\left\{{}\begin{matrix}u_1q^4-u_1=15\\u_1q^3-u_1q=6\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1\left(q^4-1\right)}{u_1\left(q^3-q\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{\left(q^2-1\right)\left(q^2+1\right)}{q\left(q^2-1\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{q^2+1}{q}=\dfrac{15}{6}\)
\(\Leftrightarrow6\left(q^2+1\right)=15q\)\(\Leftrightarrow6q^2-15q+6=0\)\(\Leftrightarrow\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\).
Với \(q=2\).
Suy ra: \(u_1\left(q^4-q\right)=15\Rightarrow u_1=\dfrac{15}{q^4-q}=\dfrac{15}{14}\).
Với \(q=\dfrac{1}{2}\)
Suy ra \(u_1=\dfrac{15}{q^4-q}=\dfrac{-240}{7}\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_2} = {u_1}.q\)

\({u_3} = {u_2}.q = {u_1}.{q^2}\)

\({u_4} = {u_3}.q = {u_1}.{q^3}\)

\({u_5} = {u_4}.q = {u_1}.{q^4}\)

b) Từ a suy ra: \({u_n} = {u_1} \times {q^{n - 1}}\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a, Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}{u_2}\; + {\rm{ }}{u_5}\; = {\rm{ }}42\\{u_4}\; + {\rm{ }}{u_9}\; = {\rm{ }}66\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + d\; + {\rm{ }}{u_1} + 4d\; = {\rm{ }}42\\{u_1} + 3d\; + {\rm{ }}{u_1} + 8d\;\; = {\rm{ }}66\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 5d\;\; = {\rm{ }}42\\2{u_1} + 11d\;\;\; = {\rm{ }}66\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}\frac{{99}}{7}\\d\;\;\; = {\rm{ }}\frac{{24}}{7}\end{array} \right.\end{array}\)

b, Ta có: '

\(\begin{array}{l}\left\{ \begin{array}{l}\;{u_2}\; + {\rm{ }}{u_4}\; = {\rm{ }}22\\{u_1}.{u_5}\; = {\rm{ }}21\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + d\; + {\rm{ }}{u_1} + 3d\; = {\rm{ 2}}2\\{u_1}.\left( {{u_1} + 4d\;} \right)\; = {\rm{ 21}}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 4d\;\; = {\rm{ 2}}2\\{u_1}.\left( {{u_1} + 4d\;} \right)\; = {\rm{ 21}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\\left( {11 - 2d} \right).\left( {11 - 2d + 4d\;} \right)\; = {\rm{ 21}}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\\left( {11 - 2d} \right).\left( {11 + 2d\;} \right)\; = {\rm{ 21}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\{11^2} - {\left( {2d\;} \right)^2} = {\rm{ 21}}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\121 - 4{d^2} = {\rm{ 21}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\; = {\rm{ }}11 - 2d\\d\; =  \pm 5\end{array} \right.\end{array}\)

Với \(d =  - 5 \Rightarrow {u_1} = 11 - 2.\left( { - 5} \right) = 21\)

Với \(d = 5 \Rightarrow {u_1} = 11 - 2.5 = 1\)