Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: u 2 + u 8 + u 9 + u 15 = 100
⇔ u 1 + d + u 1 + 7 d + u 1 + 8 d + u 1 + 14 d = 100 ⇔ 4 u 1 + 30 d = 100 ⇔ 2 u 1 + 15 d = 50.
Khi đó S 16 = 16 2 2 u 1 + 15 d = 8.50 = 400
Chọn đáp án D.
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Gọi u1,du1,d lần lượt là số hạng đầu và công sai của cấp số cộng
Ta có: {u5=−15u20=60u5=-15u20=60.
Vậy S10=102.(2u1+9d)=−125
\(\left\{{}\begin{matrix}u_5=-15\\u_{20}=60\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1+4d=-15\\u_1+19d=60\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1=-35\\d=5\end{matrix}\right.\)
\(\Rightarrow S_{20}=\dfrac{20.\left(u_1+u_{20}\right)}{2}\)
\(=10\left(2u_1+19d\right)\)
\(=10\left(-2.35+19.5\right)\)
\(=250\)
Chọn đáp án A
Gọi u 1 , d lần lượt là số hạng đầu và công sai của cấp số cộng
Ta có: u 5 = - 15 u 20 = 60 .
Vậy S 10 = 10 2 . ( 2 u 1 + 9 d ) = - 125
Chọn D
Phương pháp
Tổng của n số hạng đầu của CSC có số hạng đầu là u1 và công sai d:
Cách giải:
Ta có: S 14 = n 2 u 1 + ( n - 1 ) d 2 = 280
\(S_n=nu_1+\dfrac{n\left(n-1\right)}{2}d=n\left(n.\dfrac{d}{2}+u_1-\dfrac{d}{2}\right)=n\left(n+4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{d}{2}=1\\u_1-\dfrac{d}{2}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=5\\d=1\end{matrix}\right.\)
\(u_n=5+1.\left(n-1\right)=n+4\)
Chọn B.
- Ta có: u 1 = S 1 = 3 .
- Vậy M = u 1 + d = 3 - 2 = 1 .
Ta có: u 2 + u 23 = 60 ⇔ u 1 + d + u 1 + 22 d = 60 ⇔ 2 u 1 + 23 d = 60.
Khi đó S 24 = n 2 . 2 u 1 + ( n − 1 ) d = 24 2 2 u 1 + 23 d = 12.60 = 720.
Chọn đáp án C