K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Lời giải:

Sử dụng kết quả sau: Với \(n\in\mathbb{N}\Rightarrow n^5-n\vdots 30\)

Chứng minh:

Ta có: \(n^5-n=n(n^4-1)=n(n-1)(n+1)(n^2+1)\)

Xét thấy \(n-1,n\) là hai số nguyên liên tiếp nên \(n(n-1)\vdots 2\)

\(\Rightarrow n^5-n\vdots 2(1)\)

Xét thấy \(n-1,n,n+1\) là ba số nguyên liên tiếp nên

\(n(n-1)(n+1)\vdots 3\)

\(\Rightarrow n^5-n\vdots 3(2)\)

Xét modulo của 5 cho $n$ :

+) \(n=5k\Rightarrow n^5-n=(5k)^2-(5k)\vdots 5\)

+) \(n=5k+1\Rightarrow n-1=5k\vdots 5\Rightarrow n^5-n\vdots 5\)

+) \(n=5k+2\Rightarrow n^2+1=(5k+2)^2+1=5(5k^2+4k+1)\vdots 5\)

\(\Rightarrow n^5-n\vdots 5\)

+) \(n=5k+3\Rightarrow n^2+1=(5k+3)^2+1=5(5k^2+6k+2)\vdots 5\)

\(\Rightarrow n^5-n\vdots 5\)

+) \(n=5k+4\Rightarrow n+1=5k+5\vdots 5\)

\(\Rightarrow n^5-n\vdots 5\)

Tóm lại trong mọi TH thì \(n^5-n\vdots 5(3)\)

Từ (1);(2);(3) và (2,3,5) là 3 số đôi một nguyên tố cùng nhau nên:

\(n^5-n\vdots (2.3.5=30)\)

--------------------------------

Quay trở tại bài toán. Áp dụng kết quả trên:

\(M-N=(a_1^5-a_1)+(a_2^5-a_2)+...+(a_{2017}^5-a_{2017})\vdots 30\)

Mà \(N\vdots 30\Rightarrow M\vdots 30\)

Vậy ta có đpcm.

28 tháng 7 2017

Cái đề đọc không ra. B sửa đề lại cho dễ đọc đi

8 tháng 2 2020

Giả sử trong 100 số đó k có 2 số nào bằng nhau thì

\(A=\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)

+ Ta có : \(\frac{1}{\sqrt{n}}=2.\frac{1}{\sqrt{n}+\sqrt{n}}< 2.\frac{n-\left(n-1\right)}{\sqrt{n-1}+\sqrt{n}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Do đó: \(A\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(\Rightarrow A< 1+2\left(\sqrt{100}-1\right)\Rightarrow A< 19\) ( trái vs giả thiết )

=> điều giả sử là sai => đpcm

8 tháng 12 2023

Bài 1:

cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3

Giả sử a và b đồng thời đều không chia hết cho 3

      Vì a không chia hết cho 3 nên  ⇒ a2 : 3 dư 1

      vì b không chia hết cho b nên   ⇒ b2 : 3 dư 1

⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)

Vậy a; b không thể đồng thời không chia hết cho ba

     Giả sử a ⋮ 3; b không chia hết cho 3 

      a ⋮ 3 ⇒  a 2 ⋮ 3 

   Mà  a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết) 

Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra 

Từ những lập luận trên ta có:

   a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)

       

 

 

10 tháng 12 2016

2/ Mình sẽ chứng minh bằng phản chứng :)

Giả sử rằng trong 100 số đó không tồn tại hai số nào bằng nhau, khi đó không mất tính tổng quát, ta gọi \(a_i< a_{i+1}....\) với \(i=\overline{1,100}\) 

Bằng cách giả sử như vậy, ta có thể đặt \(a_i\ge i\)

Ta có : \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}\ge\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)

Đặt \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+..+\frac{1}{\sqrt{100}}\)

Ta chứng minh bài toán phụ : Với n là số tự nhiên lớn hơn 0 thì \(\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Thật vậy : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Áp dụng với n = 1,2,...,100 được : 

\(A>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)

\(=2\left(\sqrt{101}-\sqrt{1}\right)>2\left(\sqrt{100}-1\right)=18\)

Mình làm đến đây nhưng không biết vì sao nó lại chưa chặt, có ai có cách khác không?

11 tháng 12 2016

Giả sử a1, a2, ..., a100 là 100 số khác nhau thì 

\(P=\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)

Ta chứng minh với mọi n ≥ 2 thì 

\(\frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Ta có: \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}\)

\(=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Áp dụng vào bài toán ta được

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)

\(=1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(=1+2\left(\sqrt{100}-1\right)=19\)

\(\Rightarrow P< 19\)

Vậy nếu như a1, a2, ..., a100 là 100 số tự nhiên khác nhau thì tổng P luôn luôn < 19.

Nên để tổng P = 19 thì phải có ít nhất 2 trong 100 số đó phải bằng nhau

12 tháng 8 2020

\(a^5+29a=a^5-a+30a\)

Theo Fermat nhỏ thì \(a^5-a⋮5\) mặt khác \(a^5-a=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮6\)

nên \(a^5+29a⋮30\) ( điều phải chứng minh )