Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(1+y^2\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\)
TT...
\(\Rightarrow Q=x+y+z+3-\frac{y^2\left(x+1\right)}{1+y^2}-\frac{z^2\left(y+1\right)}{1+z^2}-\frac{x^2\left(1+z\right)}{1+x^2}\)
\(\ge6-\frac{y^2\left(x+1\right)}{2y}-\frac{z^2\left(y+1\right)}{2z}-\frac{x^2\left(z+1\right)}{2x}=6-\frac{xy+yz+xz+x+y+z}{2}\)
\(=6-\frac{3+xy+yz+xz}{2}\ge6-\frac{3+\frac{\left(x+y+z\right)^2}{3}}{2}=6-\frac{3+\frac{3^2}{3}}{2}=3\)
Vậy GTNN của Q là 3 khi x = y = z = 1
Đặt: y + z = a thì ta có
\(x\le2a\)
Từ đề bài thì ta có thể suy ra
\(A\le\frac{2x}{a^2}-\frac{1}{\left(x+a\right)^3}\)
\(\le\frac{4}{a}-\frac{1}{27a^3}=\frac{108a^2-1}{27a^3}\)
\(=16-\frac{\left(6a-1\right)^2\left(12a+1\right)}{27a^3}\le16\)
Vậy GTLN là \(A=16\). Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=z=\frac{1}{12}\end{cases}}\)
Áp dụng bđt AM-GM ta được:
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)
\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge2\sqrt{\frac{y^2}{z+x}.\frac{z+x}{4}}=y\)
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}=z\)
Cộng từng vế các bất đẳng thức trên ta được
\(A+\frac{x+y+z}{2}\ge x+y+z\)
\(\Rightarrow A\ge\frac{x+y+z}{2}=1\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)
Cách 2:Dù dài hơn Lê Tài Bảo Châu
\(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\left(x+y+z\right)\cdot\frac{x}{y+z}\)
\(\frac{y^2}{z+x}+y=\left(x+y+z\right)\cdot\frac{y}{z+x};\frac{z^2}{x+y}+z=\left(x+y+z\right)\cdot\frac{z}{x+y}\)
Suy ra \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\left(x+y+z\right)=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)
Đến đây thay x+y+z=2 và BĐT netbitt là ra ( chứng minh netbitt nha )
Cách 3:
\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)
Khi x = y = z = 1 thì B = 5 do đó nếu ta chứng minh được B > 5 thì đây cũng chính là giá trị nhỏ nhất của B.
Viết B lại dưới dạng thuần nhất ta được : \(B=\frac{x}{z}+\frac{z}{y}+\frac{9y}{x+y+z}\)
Theo bất đẳng thức Cauchy-Schwarz: \(B\ge\frac{\left(x+z+3y\right)^2}{zx+yz+y\left(x+y+z\right)}\)
Cần chứng minh \(\left(x+z+3y\right)^2\ge5\left[zx+yz+y\left(x+y+z\right)\right]\) (*)
Đã có x > y > z nên tồn tại 2 số thực m,n không âm sao cho m = a + z ; n = b + z
Thay m,n vào (*) ta được kết quả thu gọn là a2 + ab + 4b2 + 5bz > 0
Do đó P = 5 đạt GTNN
Ta có : \(x\ge y\ge z\)\(\Rightarrow\frac{x}{z}\ge\frac{x}{y}\Rightarrow B\ge\frac{x}{y}+\frac{z}{y}+3y=\frac{3-y}{y}+3y=\frac{3}{y}+3y-1\ge2.\sqrt{\frac{3}{y}.3y}-1=5\)
Dấu đẳng thức xảy ra \(\Leftrightarrow\begin{cases}\frac{x}{z}+\frac{z}{y}+3y=5\\x+y+z=3\\\frac{3}{y}=3y\end{cases}\)\(\Leftrightarrow x=y=z=1\)
Vậy Min B = 5 <=> x = y = z = 1.
trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)
\(A=\left(x^3+1+1\right)+\left(y^3+1+1\right)+\left(z^3+1+1\right)-6\)
\(A\ge3\sqrt[3]{x^3}+3\sqrt[3]{y^3}+3\sqrt[3]{z^3}-6=3\left(x+y+z\right)-6\ge3.3-6=3\)
\(A_{min}=3\) khi \(x=y=z=1\)