K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

Nhìn nó tưởng khủng hóa ra đơn giản lắm :D

Sẵn mẫu = 2 ở Vế trái, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 2 lần nên tổng VT = x1 + x2 + ... + xn

Sẵn mẫu = 3 ở Vế ơhair, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 3 lần nên tổng VP = x1 + x2 + ... + xn

=> VT = VP. đpcm

11 tháng 7 2016

Lão Linh mới xét đến điều kiện dấu "=" xảy  ra

Thế còn điều kiện "<" vứt đâu?

1 tháng 7 2020

Với \(n=4\) bđt \(\Leftrightarrow\)\(\frac{x_1}{x_4+x_2}+\frac{x_2}{x_1+x_3}+\frac{x_3}{x_2+x_4}+\frac{x_4}{x_3+x_1}\ge2\)

\(\Leftrightarrow\)\(\frac{x_1^2}{x_4x_1+x_1x_2}+\frac{x_2^2}{x_1x_2+x_2x_3}+\frac{x_3^2}{x_2x_3+x_3x_4}+\frac{x_4^2}{x_3x_4+x_4x_1}\ge2\) (1) 

\(VT_{\left(1\right)}\ge\frac{\left(x_1+x_2+x_3+x_4\right)^2}{2\left(x_1x_2+x_2x_3+x_3x_4+x_4x_1\right)}\ge\frac{\left(x_1+x_2+x_3+x_4\right)^2}{2.\frac{\left(x_1+x_2+x_3+x_4\right)^2}{4}}=2\)

Giả sử bđt đúng đến n=k hay \(\frac{x_1}{x_k+x_2}+\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}+\frac{x_k}{x_{k-1}+x_1}\ge2\)

\(\Leftrightarrow\)\(\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}\ge2-\frac{x_1}{x_k+x_2}-\frac{x_k}{x_{k-1}+x_1}\)

Với n=k+1, cần cm \(\frac{x_1}{x_{k+1}+x_2}+\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}+\frac{x_k}{x_{k-1}+x_{k+1}}+\frac{x_{k+1}}{x_k+x_1}\ge2\)

hay \(\frac{x_1}{x_{k+1}+x_2}-\frac{x_1}{x_k+x_2}+\frac{x_k}{x_{k-1}+x_{k+1}}-\frac{x_k}{x_{k-1}+x_1}+\frac{x_{k+1}}{x_k+x_1}\ge0\) (2) 

giả sử \(x_k=max\left\{a_1;a_2;...;a_{k+1}\right\}\)

\(VT_{\left(2\right)}=\frac{x_1\left(x_k-x_{k+1}\right)}{\left(x_k+x_2\right)\left(x_{k+1}+x_2\right)}+\frac{x_k\left(x_1-x_{k+1}\right)}{\left(x_{k-1}+x_1\right)\left(x_{k-1}+x_{k+1}\right)}+\frac{x_{k+1}}{x_k+x_1}>0\)

2 tháng 7 2020

nhầm, chỗ giả sử là \(x_{k+1}=min\left\{x_1;x_2;...;x_{k+1}\right\}\)

20 tháng 4 2019

\(max\left\{x_1;x_2;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)

18 tháng 11 2019

Đề Tuyển sinh lớp 10 chuyên toán ĐHSP Hà Nội 2012-2013

NGUỒN:CHÉP MẠNG,CHÉP Y CHANG CHỨ E KO HIỂU GÌ ĐÂU(vài dòng đầu)-lỡ như anh cần mak ko có key. ( VÔ TÌNH TRA TÀI LIỆU THÌ THẦY BÀI NÀY )

P/S:Xin đừng bốc phốt.

Để ý trong 2 số thực x,y bất kỳ luôn có 

\(Min\left\{x;y\right\}\le x,y\le Max\left\{x,y\right\}\) và \(Max\left\{x;y\right\}=\frac{x+y+\left|x-y\right|}{2}\)

Ta có:

\(\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+.....+\left|x_n-x_1\right|}{2n}\)

\(=\frac{x_1+x_2+\left|x_1-x_2\right|}{2n}+\frac{x_2+x_3+\left|x_2-x_3\right|}{2n}+.....+\frac{x_3+x_4+\left|x_3-x_4\right|}{2n}+\frac{x_4+x_5+\left|x_4-x_5\right|}{2n}\)

\(\le\frac{Max\left\{x_1;x_2\right\}+Max\left\{x_2;x_3\right\}+.....+Max\left\{x_n;x_1\right\}}{n}\)

\(\le Max\left\{x_1;x_2;x_3;.....;x_n\right\}^{đpcm}\)

5 tháng 1 2021

Chắc bạn đánh nhầm đề. Đây là bài 7 trong báo TTT tháng trước. (Nếu mình sửa sai thì mình xin lỗi nhé).

Sửa đề: Cho \(n\in\mathbb{N},n\geq 2\) và \(x_i\in[1;\sqrt{2}] \forall i\in\overline{1,n}\).

Chứng minh: \(\dfrac{\sqrt{x_1^2-1}}{x_2}+\dfrac{\sqrt{x_2^2-1}}{x_3}+...+\dfrac{\sqrt{x_n^2-1}}{x_1}\le\dfrac{n\sqrt{2}}{2}\).

Giải:

Áp dụng bất đẳng thức AM - GM ta có:

\(\dfrac{\sqrt{x_1^2-1}}{x_2}=\dfrac{1}{2\sqrt{2}}.2.\sqrt{x_1^2-1}.\dfrac{\sqrt{2}}{x_2}\le\dfrac{1}{2\sqrt{2}}.\left(x_1^2-1+\dfrac{2}{x_2^2}\right)\).

Chứng minh tương tự...

Do đó \(VT\le\dfrac{1}{2\sqrt{2}}\left(x_1^2+x_2^2++...+x_n^2+\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}+...+\dfrac{2}{x_n^2}-n\right)\).

Mặt khác với mọi \(i\in\overline{1,n}\) ta có:

\(x_i^2+\dfrac{2}{x_i^2}-3=\dfrac{\left(x_i^2-1\right)\left(x_i^2-2\right)}{x_i^2}\le0\).

Do đó \(VT\le\dfrac{1}{2\sqrt{2}}\left(x_1^2+x_2^2++...+x_n^2+\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}+...+\dfrac{2}{x_n^2}-n\right)\le\dfrac{1}{2\sqrt{2}}\left(3n-n\right)=\dfrac{n\sqrt{2}}{2}=VP\left(đpcm\right)\).

 

2 tháng 5 2019

Theo hệ thức Vi-et\(\hept{\begin{cases}x_1+x_2+x_3=0\\x_1x_2+x_2x_3+x_3x_1=-1\\x_1x_2x_3=1\end{cases}}\)

Ta có \(T=\frac{1+x_1}{1-x_1}+\frac{1+x_2}{1-x_2}+\frac{1+x_3}{1-x_3}\)

             \(=\frac{x_1-1}{1-x_2}+\frac{2}{1-x_1}+\frac{x_2-1}{1-x_2}+\frac{2}{1-x_2}+\frac{x_3-1}{1-x_3}+\frac{2}{1-x_3}\)

              \(=-1+\frac{2}{1-x_1}-1+\frac{2}{1-x_2}-1+\frac{2}{1-x_3}\)

              \(=2\left(\frac{1}{1-x_1}+\frac{1}{1-x_2}+\frac{1}{1-x_3}\right)-3\)

             \(=2.\frac{\left(1-x_2\right)\left(1-x_3\right)+\left(1-x_1\right)\left(1-x_3\right)+\left(1-x_1\right)\left(1-x_2\right)}{\left(1-x_1\right)\left(1-x_2\right)\left(1-x_3\right)}-3\)

              \(=2.\frac{1-x_2-x_3+x_2x_3+1-x_1-x_3+x_1x_3+1-x_1-x_2+x_1x_2}{\left(1-x_1-x_2+x_1x_2\right)\left(1-x_3\right)}-3\)

             \(=2.\frac{3-2\left(x_1+x_2+x_3\right)+\left(x_1x_2+x_2x_3+x_3x_1\right)}{1-x_1-x_2+x_1x_2-x_3+x_1x_3+x_2x_3-x_1x_2x_3}-3\)

              \(=2.\frac{3-2.0-1}{1-\left(x_1+x_2+x_3\right)+\left(x_1x_2+x_2x_3+x_3x_1\right)-x_1x_2x_3}-3\)

              \(=2.\frac{2}{1-0-1-1}-3\)

               \(=-7\)

3 tháng 5 2019

Bài này lớp 7 mik đánh lộn vào lớp 9 ạ.mọi người thông cảm.

a Dw ơi,e thử làm cách khác:3

Vì  \(x_1;x_2;x_3\) là 3 nghiệm của phương trình  \(x^3-x-1\) nên:

\(x^3-x-1=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\)

\(=x^3-\left(x_1+x_2+x_3\right)x^2+\left(x_1x_2+x_2x_3+x_1x_3\right)x-x_1x_2x_3\)

Do đó \(x_1+x_2+x_3=0;x_1x_2+x_2x_3+x_1x_3=-1;x_1x_2x_3=1\)

Lại có:\(x_1^3-x_1-1=0\)

\(\Leftrightarrow-x_1=1-x_1^3=\left(1-x_1\right)\left(1+x_1+x_1^2\right)\)

\(\Rightarrow\frac{1+x_1}{1-x_1}=\frac{\left(1+x_1\right)\left(1+x_1+x_1^2\right)}{-x_1}=\frac{x_1^3+3x_1^2+2x_1+1}{-x_1}=\frac{3x_1^2+3x_1-2}{-x_1}=-\left(3+2x_1+\frac{2}{x_1}\right)\)

Chứng minh tương tự,ta có:

\(\frac{1+x_2}{1-x_2}=-\left(3+2x_2+\frac{2}{x_2}\right)\)

\(\frac{1+x_3}{1-x_3}=-\left(3-2x_3+\frac{2}{x_3}\right)\)

Khi đó:\(T=\frac{1+x_1}{1-x_1}+\frac{1+x_2}{1-x_2}+\frac{1+x_3}{1-x_3}\)

\(=-\left(9+2\left(x_1+x_2+x_3\right)+2\cdot\frac{x_1x_2+x_2x_3+x_1x_3}{x_1x_2x_3}\right)\)

\(=-\left(9+2\cdot0+2\cdot\frac{-1}{1}\right)\)

\(=-7\)

Vậy T=-7

25 tháng 3 2020

Phương trình tương đương:

\(\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)

\(\Leftrightarrow\left(a+3\right)\left(a-5\right)-m=0\)

\(\Leftrightarrow a^2-2a-15-m=0\) (1) với \(a=x^2+4x\)

Để phương trình ẩn x có 4 nghiệm phân biệt thì điều kiện cần của phương trình ẩn a là phải có 2 nghiệm phân biệt.

\(\Delta'_{\left(1\right)}=1+15+m=16+m>0\) \(\Rightarrow m>-16\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2+\sqrt{16+m}\\a=2-\sqrt{16+m}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+4x-2-\sqrt{16+m}=0\left(2\right)\\x^2+4x-2+\sqrt{16+m}=0\left(3\right)\end{matrix}\right.\)

Dễ thấy (2) luôn có 2 nghiệm phân biệt với mọi m, (3) có 2 nghiệm phân biệt khi \(m< 0\). (Xét denta)

Nghiệm của chúng lần lượt là:

\(\left[{}\begin{matrix}x=2+\sqrt{4+\sqrt{16+m}}\\x=2-\sqrt{4+\sqrt{16+m}}\\x=2+\sqrt{4-\sqrt{16+m}}\\x=2-\sqrt{4-\sqrt{16+m}}\end{matrix}\right.\). 4 nghiệm này luôn phân biệt với \(-16< m< 0\)

Lần lượt thay nghiệm vào điều kiện:

\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)

Ta được phương trình vô nghiệm. Vậy không tìm nổi m :V

11 tháng 6 2019

Một cửa hàng ngày thứ nhất bán 180 tạ gạo, ngày thứ hai bán 270 tạ gạo , ngày thứ ba bán kém hơn ngày thứ hai một nửa .Hỏi trung bình mỗi ngày cửa hàng bán được bao nhiêu tạ gạo ?

11 tháng 6 2019

1) Xét hiệu :

\(\left(x_1+x_2+x_3\right)\left(y_1+y_2+y_3\right)-3\left(x_1y_1+x_2y_2+x_3y_3\right).\)

\(=x_1\left(y_1+y_2+y_3\right)-3x_1y_1+x_2\left(y_1+y_2+y_3\right)-3x_2y_2+x_3\left(y_1+y_2+y_3\right)-3x_3y_3.\)

\(=x_1\left(y_2+y_3-2y_1\right)+x_2\left(y_1+y_3-2y_2\right)+x_3\left(y_1+y_2-2y_3\right)\)

\(=x_1\left[\left(y_2-y_1\right)-\left(y_1-y_3\right)\right]+x_2\left[\left(y_3-y_2\right)-\left(y_2-y_1\right)\right]+x_3\left[\left(y_1-y_3\right)-\left(y_3-y_2\right)\right]\)

\(=\left(y_2-y_1\right)\left(x_1-x_2\right)+\left(y_1-y_3\right)\left(x_3-x_1\right)+\left(y_3-y_2\right)\left(x_2-x_3\right)\le0\)

Vì \(x_1\le x_2\le x_3;y_1\le y_2\le y_3\)

NV
28 tháng 6 2020

Giả sử tất cả các pt dưới đây đều có nghiệm

\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)=m\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)=m\)

Đặt \(x^2-5x+4=t\) \(\Rightarrow x^2-5x+4-t=0\) (1)

\(\Rightarrow t\left(t+2\right)=m\Leftrightarrow t^2+2t-m=0\) (2)

Giả sử (2) có 2 nghiệm \(t_1;t_2\)

Theo Viet: \(\left\{{}\begin{matrix}t_1+t_2=-2\\t_1t_2=-m\end{matrix}\right.\)

Thay vào (1): \(\left[{}\begin{matrix}x^2-5x+4-t_1=0\\x^2-5x+4-t_2=0\end{matrix}\right.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=4-t_1\\x_3+x_4=5\\x_3x_4=4-t_2\end{matrix}\right.\)

\(Q=\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=\frac{5}{4-t_1}+\frac{5}{4-t_2}=\frac{40-5\left(t_1+t_2\right)}{\left(4-t_1\right)\left(4-t_2\right)}\)

\(=\frac{40-5\left(t_1+t_2\right)}{t_1t_2-4\left(t_1+t_2\right)+16}=\frac{40-5.\left(-2\right)}{-m-4.\left(-2\right)+16}=\frac{50}{24-m}\)