K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2015

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai, 
a,b,c là 3 số dương.

24 tháng 9 2015

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).

Vậy điều giả sử trên là sai, 
Do đó a,b,c là 3 số dương.

Đề đúng: Cho a,b,c thỏa mãn a+b+c>0; ab+bc+ac>0; abc>0. Chứng minh a,b,c>0

Vì abc>0 nên có ít nhất 1 số lớn hơn 0

Vai trò của a, b, c như nhau nên chọn a>0

TH1: b<0;c<0 

\(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\)

\(\Rightarrow b^2+2bc+c^2< -ab-ac\)

\(\Rightarrow b^2+bc+c^2< -\left(ab+bc+ca\right)\)(vô lí)

TH2: b>0, c>0 thì a>0( luôn đúng)

Vậy a, b, c >0

27 tháng 4 2020

Xét các trường hợp 

TH1 :có 1 số < 0, 2 số > 0.

giả sử a < 0, b,c > 0

\(\Rightarrow bc>0\)

Mà a < 0 \(\Rightarrow abc< 0\)( trái với gt )

\(\Rightarrow\)loại

TH2 : 2 số < 0, 1 số > 0

giả sử b,c < 0, a > 0

\(\Rightarrow bc>0,b+c< 0\)

Mà a + b + c > 0 nên \(a>-\left(b+c\right)>0\)

\(\Rightarrow a\left(b+c\right)< -\left(b+c\right)\left(b+c\right)=-\left(b+c\right)^2< 0\)

Nên ab + bc + ac = a ( b + c ) + bc < -(b+c)2 + bc = - ( b2 + c2 + bc ) < 0  ( trái với giả thiết )

TH3 :  3 số a,b,c < 0

\(\Rightarrow abc< 0\)( trái với giả thiết )
Vậy cả 3 số a,b,c đều lớn hơn 0

2 tháng 7 2016

đề bài kì tek

3 tháng 7 2016

bạn tham khảo cho 0<=a,b,c<=1 cmr: a+b2+c3-a.b-a.c-b.c <=1? | Yahoo Hỏi & Đáp

25 tháng 6 2017

bạn có viết đề sai ko?

10 tháng 2 2018

Áp dụng bđt : x^2+y^2+z^2 >= xy+yz+zx và x^2+y^2+z^2 >= (x+y+z)^2/3 thì :

a^4+b^4+c^4 >= a^2b^2+b^2c^2+c^2a^2 >= (ab+bc+ca)^2/3 = 4^2/3 = 16/3

Dấu "=" xảy ra <=> a=b=c=\(+-\frac{2}{\sqrt{3}}\)

Vậy ...............

Tk mk nha

10 tháng 2 2018

khó tả