Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong hai số x,y không có số nào chia hết cho 3 thì
\(x^2,y^2\) chia cho 3 dư 1 ( do số chính phương chia cho 3 chỉ dư 0 hoặc 1)
\(\Rightarrow x^2+y^2\equiv2\left(mod3\right)\) \(\Rightarrow z^2\equiv2\left(mod3\right)\) => vô lí
vậy trong hai số x,y phải có 1 số chia hết cho 3
tương tự ta cũng chứng minh được trong 2 số x,y có 1 số chia hết cho 4 ( sử dụng tính chất số chính phương chia cho 4 chỉ dư 0 hoặc 1)
mà \(\left(3,4\right)=1\) \(\Rightarrow xy⋮12\)
a.
\(\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)
Do y và y+1 nguyên tố cùng nhau \(\Rightarrow32⋮\left(y+1\right)^2\)
\(\Rightarrow\left(y+1\right)^2=\left\{4;16\right\}\)
\(\Rightarrow...\)
b.
\(2a^2+a=3b^2+b\Leftrightarrow2\left(a-b\right)\left(a+b\right)+a-b=b^2\)
\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)
Gọi \(d=ƯC\left(2a+2b+1;a-b\right)\)
\(\Rightarrow b^2\) chia hết \(d^2\Rightarrow b⋮d\) (1)
Lại có:
\(\left(2a+2b+1\right)-2\left(a-b\right)⋮d\)
\(\Rightarrow4b+1⋮d\) (2)
(1);(2) \(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2a+2b+1\) và \(a-b\) nguyên tố cùng nhau
Mà tích của chúng là 1 SCP nên cả 2 số đều phải là SCP (đpcm)
1/xy+1/xz>=1
<=> 1/x(1/y+1/z) >=1
<=>1/y+1/z>=x=4-y-z
<=>1/y+y+1/z+z>=4
<=>(1/y+y)+(1/z+z)>=4 (dễ nhá,tự cm đc chứ j)
>=2 >=2
Giả sử x;y⋮̸ 3
⇒x^2;y^2 chia 3 dư 1
⇒z^2=x^2+y^2 chia 3 dư 2 ( vô lý vì z^2 là số chính phương )
Vậy x⋮3y⋮3⇒xy⋮3
Chứng minh tương tự xy⋮4
(3;4)=1 => x.y chia hết cho 12
\(P^2=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2.\left(\frac{xy.yz}{zx}+\frac{yz.zx}{xy}+\frac{zx.xy}{zy}\right)\)
\(=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2.2016\)
Áp dụng BĐT Cauchy:\(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}\ge2\sqrt{\frac{x^2y^2}{z^2}.\frac{y^2z^2}{x^2}}=2y^2\)
\(\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge2\sqrt{\frac{y^2z^2}{x^2}.\frac{z^2x^2}{y^2}}=2z^2\)
\(\frac{z^2x^2}{y^2}+\frac{x^2y^2}{z^2}\ge2\sqrt{\frac{x^2z^2}{y^2}.\frac{x^2y^2}{z^2}}=2x^2\)
Cộng theo vế ta được:\(2\left(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\right)\ge2x^2+2y^2+2z^2=2.2016\)
\(\Rightarrow\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge2016\)
\(\Rightarrow P^2\ge2016+2016.2=6048\Rightarrow P\ge\sqrt{6048}=12\sqrt{42}\)
Nên GTNN của P là \(12\sqrt{42}\) đạt được khi \(x=y=z=\sqrt{\frac{2016}{3}}=4\sqrt{42}\)