K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2022

Ta có: x2+y2+2xy-4x-2y+1=0

      ⇔(x2+y2+2xy-2x-2y+1)-2x=0

      ⇔(x+y-1)2=2x

Mà (x+y-1)2 là số chính phương

⇒2x là số chính phương

⇒2x chia 4 dư 0 hoặc 1

Mà 2x là số chẵn 

⇒2x chia hết cho 4

⇒x chia hết cho 2

⇒x là số chẵn(đpcm)

Lại có:(x+y-1)2=2x

\(\dfrac{\left(x+y-1\right)^2}{2}\)=x

\(\dfrac{\left(x+y-1\right)^2}{2}\): 2=x:2

\(\dfrac{\left(x+y-1\right)^2}{2}\)\(\dfrac{1}{2}\) =x:2

\(\dfrac{\left(x+y-1\right)^2}{4}\)=x:2

⇒(\(\dfrac{x+y-1}{2}\))2=x:2  

Mà \(\left(\dfrac{x+y-1}{2}\right)^2\) là số chính phương

⇒x:2 là số chính phương (đpcm)

20 tháng 5 2017

Không mất tính tổng quát ta giả sử \(x\ge y\)

Ta có:

\(x^2< x^2+8y\le x^2+8x< x^2+8x+16=\left(x+4\right)^2\)

\(\Rightarrow x^2+8y=\left(x+1\right)^2or\left(x+2\right)^2or\left(x+3\right)^2\)

PS: Vì e là CTV nên a chỉ gợi ý thôi nha. Phần còn lại e thử tự nghĩ xem sao nhé. A giải quyết cho e phần khó nhất rồi đấy :)

4 tháng 8 2019

Anh Alibaba Nguyễn, giải tìm x ntn vậy, em mới tìm được y thôi

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

NV
5 tháng 3 2023

\(\dfrac{x}{y}=\dfrac{x+y}{y+z}=\dfrac{y}{z}\Rightarrow xz=y^2\)

\(\left(y+2\right)\left(4xz+6y-3\right)=n^2\)

\(\Rightarrow\left(y+2\right)\left(4y^2+6y-3\right)=n^2\)

Gọi \(d=ƯC\left(y+2;4y^2+6y-3\right)\)

\(\Rightarrow4y^2+6y-3-\left(y+2\right)\left(4y-2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow y+2\) và \(4y^2+6y-3\) nguyên tố cùng nhau

Mà \(\left(y+2\right)\left(4y^2+6y-3\right)\) là SCP \(\Rightarrow y+2\) và \(4y^2+6y-3\) đồng thời là SCP

\(\Rightarrow4y^2+6y-3=k^2\)

\(\Leftrightarrow\left(4y+3\right)^2-21=\left(2k\right)^2\)

\(\Rightarrow\left(4y+3-2k\right)\left(4y+3+2k\right)=21\)

Giải pt ước số trên ra \(y=2\) là số nguyên dương duy nhất thỏa mãn

Thế vào \(xz=y^2=4\Rightarrow\left(x;z\right)=\left(1;4\right);\left(4;1\right);\left(2;2\right)\)

Vậy \(\left(x;y;z\right)=\left(1;2;4\right);\left(4;2;1\right);\left(2;2;2\right)\)

NV
24 tháng 2 2021

\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)

\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)

\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)

Mà x nguyên dương \(\Rightarrow2x-1>0\)

\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\) 

\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)