K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2018

\(\left|x-1\right|+\left|x-3\right|+\left|x-5\right|+\left|x-7\right|=\left(\left|x-1\right|+\left|x-7\right|\right)+\left(\left|x-3\right|+\left|x-5\right|\right)\\ \)

\(=\left(\left|x-1\right|+\left|7-x\right|\right)+\left(\left|x-3\right|+\left|5-x\right|\right)\)

\(\ge\left|x-1+7-x\right|+\left|x-3+5-x\right|=\left|6\right|+\left|2\right|=8\)

13 tháng 7 2018

\(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=\left(\left|x+1\right|+\left|x+3\right|\right)+\left|x+5\right|=\left(\left|x+1\right|+\left|3-x\right|\right)+\left|x+5\right|\)

\(\ge\left|x+1+3-x\right|+\left|x+5\right|=\left|4\right|+\left|x+5\right|=4+\left|x+5\right|\ge4\)

\(\left|x-1\right|+2\left|x-3\right|+\left|x-5\right|=\left(\left|x-1\right|+\left|x-5\right|\right)+2\left|x-3\right|=\left(\left|x-1\right|+\left|5-x\right|\right)+2\left|x-3\right|\)

\(\ge\left|x-1+5-x\right|+2\left|x-3\right|=\left|4\right|+2\left|x-3\right|=4+2\left|x-3\right|\ge4\)

8 tháng 1 2019

A=(a-b+c)-(b-c-d)+(c-d+a)

A=a-b+c-b+c+d+c-d+a

A=2a-2b-3c

B=( a + b - c ) + ( b + c - a ) - ( a - c )

B=a + b - c + b + c - a - a + c

B=2b + c - a


8 tháng 1 2019

C = - ( 4a + 5b + c) - ( 5b + 3c )

C = -4a - 5b - c - 5b -3c

C= -4a - 10b - 4c

D= ( a - 3b + c) - ( 2a -b +c)

D= a - 3b +c - 2a + b -c

D= a - 2b

Bài 2: 
Tổng các số nghịch đảo là:

\(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+\dfrac{1}{14\cdot17}+\dfrac{1}{17\cdot20}\)

\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{17}-\dfrac{1}{20}\right)\)

\(=\dfrac{1}{3}\cdot\dfrac{10-1}{20}=\dfrac{9}{60}=\dfrac{3}{20}\)

28 tháng 2 2018

a,a-b+c-d=a+c-b-d=(a+c)-(b+d)(đpcm)

b,(a-b)-(c-d)=a-b-c+d=(a+d)-(b+c)(đpcm)

28 tháng 2 2018

a, Ta có (a-b) +(c-d) = a-b+c-d = (a+c)-(b+d)   ( ĐPCM)

b, Ta có (a-b)-(c-d) = a-b-c+d = ( a+d) - ( b+c)   ( ĐPCM )

 Tk mk nhé

3 tháng 8 2019

Giả sử a< b < c thì a \(\ge\)2 , b \(\ge\)3 , c\(\ge\)5 . Ta có :

\(\frac{1}{\left[a,b\right]}=\frac{1}{ab}\le\frac{1}{6},\frac{1}{\left[c,a\right]}=\frac{1}{ca}\le\frac{1}{10}\)

=> vế trái nhỏ hơn hoặc bằng \(\frac{1}{6}+\frac{1}{15}+\frac{1}{10}=\frac{1}{3}\)

20 tháng 7 2015

1 TA thấy S có 1000 số hạng 

Nấu ghép cặp thì có 1000:2=500(cặp)

S=(2-4)+(6-8)+......+(1998-2000)

S=(-2)+(-2)+(-2)+...........+(-2)

S=(-2).500

S=-1000

còn mấy bài sau thì cậu phá ngoặc ra là giải dc

20 tháng 7 2015

4. 

a) \(\frac{a+1}{3}\)luôn tồn tại với mọi số nguyên a

b)\(\frac{a-2}{3}\)luôn tồn tại với mọi số nguyên a

c)Điều kiện để \(\frac{13}{x-1}\)tồn tại là \(x-1\ne0\)

                                                    \(x\ne1\)

d)Điều kiện để\(\frac{x+3}{x-2}\) tồn tại là \(x-2\ne0\)

                                                \(x\ne2\)

 

giả sử điều phải chứng minh là đúng thì:

\(\dfrac{\left(a+c\right)^2}{\left(a-c\right)^2}=\dfrac{\left(b+d\right)^2}{\left(b-d\right)^2}\\ \Rightarrow\left[\left(a+c\right)\left(b-d\right)\right]^2=\left[\left(a-c\right)\left(b+d\right)\right]^2\\ \Leftrightarrow\left(ab+bc-ad-cd\right)^2=\left(ab+ad-bc-cd\right)^2\\ \Leftrightarrow\left(ab+bc-ad-cd\right)^2-\left(ab+ad-bc-cd\right)^2=0\\ \Leftrightarrow\left(ab+bc-ad-cd+ab+ad-bc-cd\right)\left(ab+bc-ad-cd-ab-ad+bc+cd\right)=0\\ \Leftrightarrow\left(2ab-2cd\right)\left(2bc-2ad\right)=0\\ \Leftrightarrow\left(ab-cd\right)\left(bc-ad\right)=0\\ \Rightarrow\left[{}\begin{matrix}ab-cd=0\\bc-ad=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}ab=cd\\bc=ad\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{c}=\dfrac{d}{b}\\\dfrac{a}{b}=\dfrac{c}{d}\left(đúng\right)\end{matrix}\right.\)

do đó điều phải chứng minh là đúng

12 tháng 4 2018

Hay quá ! Very good !banhqua